NARP-LC/MS-APCI
Dotaz
Zobrazit nápovědu
Structured triacylglycerols (TAGs) were isolated from nine cultivated strains of microalgae belonging to different taxonomic groups, i.e. Audouinella eugena, Balbiania investiens, Myrmecia bisecta, Nannochloropsis limnetica, Palmodictyon varium, Phaeodactylum tricornutum, Pseudochantransia sp., Thorea ramosissima, and Trachydiscus minutus. They were separated and isolated by means of NARP-LC/MS-APCI and chiral LC and the positional isomers and enantiomers of TAGs with two polyunsaturated, i.e. arachidonic (A) and eicosapentaenoic (E) acids and one saturated, i.e. palmitic acid (P) were identified. Algae that produce eicosapentaenoic acid were found to biosynthesize more asymmetrical TAGs, i.e. PPE or PEE, whereas algae which produced arachidonic acid give rise to symmetrical TAGs, i.e. PAP or APA, irrespective of their taxonomical classification. Nitrogen and phosphorus starvation consistently reversed the ratio of asymmetrical and symmetrical TAGs.
- MeSH
- Chlorophyta chemie MeSH
- dusík metabolismus MeSH
- fosfor metabolismus MeSH
- Heterokontophyta chemie MeSH
- kyselina arachidonová metabolismus MeSH
- kyselina eikosapentaenová metabolismus MeSH
- mastné kyseliny analýza izolace a purifikace metabolismus MeSH
- mikrořasy chemie MeSH
- Rhodophyta chemie MeSH
- triglyceridy analýza izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The main analytical benefit of this study is the development of methods enabling a rapid determination of total lipids of algae by lipidomic analysis and detailed identification and quantification of a complex mixture of natural TAGs by silver-LC/APCI-MS and NARP-LC/APCI-MS. Both types of chromatography can readily identify, both qualitatively and semiquantitatively, triacylglycerols containing 16:3 and 16:4 acids in the molecule. We conclude that the genus Chloromonas is a major producer of C16 PUFAs mostly contained in TAGs. Since more detailed studies in this field have been stymied by the shortage of 16:3 and 16:4 FAs, we decided to study the alga Chloromonas as a potential biotechnological source of C16 PUFAs.