Q114454487
Dotaz
Zobrazit nápovědu
A novel approach to the synthesis of (purin-6-yl)acetates was developed based on Pd-catalyzed cross-coupling reactions of 6-chloropurines with a Reformatsky reagent. Their reduction with NaBH4 and treatment with MnO2 gave 6-(2-hydroxyethyl)purines, while reactions with amines in presence of NaCN afforded 6-(carbamoylmethyl)purines. Mesylation of the 6-(2-hydroxyethyl)purines followed by nucleophilic substitutions gave rise to several 6-(2-substituted ethyl)purines. This methodology was successfully applied to the synthesis of substituted purine bases and nucleosides for cytostatic and antiviral activity screening. None of the compounds exerted significant activity.
Three types of brassinosteroid analogues with perfluoroalkylated side chains were synthesized by using alkene cross-metathesis of a brassinosteroid derivative bearing a terminal alkene moiety with different (perfluoroalkyl)propenes. The presence of the double bonds in the cross-metathesis products allowed a facile one-step double dihydroxylation to provide intermediates that after Baeyer-Villiger oxidation afforded the target compounds. Biological activity of the prepared analogues was tested in GABA(A) receptor, cytotoxic, and brassinolide activity, which reached in some cases the same range as their nonfluorinated analogues.
- MeSH
- alkeny chemie MeSH
- biotest MeSH
- cholestanoly farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- objevování léků MeSH
- potkani Wistar MeSH
- protinádorové látky farmakologie chemická syntéza chemie metabolismus MeSH
- receptory GABA-A metabolismus MeSH
- steroidy heterocyklické farmakologie MeSH
- steroidy chemická syntéza chemie metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Novel direct C-H borylations of 7-deazapurines to position 8 by B2pin2 under Ir catalysis were followed by Suzuki cross-couplings with aryl halides and other functional group transformations to give diverse 8-substituted 7-deazaadenines.
Synthesis of novel purine bases and nucleosides bearing unsubstituted or substituted cyclopropyl rings in position 6 is reported. Unsubstituted 6-cyclopropylpurines were efficiently prepared by cross-coupling reactions of 6-chloropurines with cyclopropylzinc chloride. 6-Vinylpurines underwent Cu-mediated cyclopropanations with ethyl diazoacetate to give 6-[(ethoxycarbonyl)cyclopropyl]purines that were further transformed to carboxylic acids, amides and alcohols. 6-Cyclopropylpurine ribonucleoside exerted a significant cytostatic effect while all substituted derivatives were inactive.
A new modular methodology of preparation of 5-substituted thiophene-2-yl C-nucleosides was developed. A Friedel-Crafts-type of C-glycosidation of 2-bromothiophene with toluoyl-protected methylglycoside 2 gave the desired protected 1beta-(5-bromothiophen-2-yl)-1,2-dideoxyribofuranose 4a in 60%. The key intermediate 4a was then subjected to a series of palladium-catalyzed cross-coupling reactions. The cross-coupling reactions with alkyl organometallics gave beta-(5-alkylthiophen-2-yl)-2-deoxyribonucleosides 4 and 7 in moderate yields accompanied by side-products of reduction. On the other hand, cross-couplings with arylstannanes proceeded smoothly to give a series of beta-(5-arylthiophen-2-yl)-2-deoxyribonucleosides 4 in good yields. Deprotection of toluoylated nucleosides by NaOMe in MeOH and silylated nucleosides by Et 3N.3HF gave a series of free C-nucleosides 6. Alternatively, other types of 5-arylthiophene C-nucleosides 6 were prepared in one step by the aqueous-phase cross-coupling reactions of unprotected 1beta-(5-bromothiophen-2-yl)-1,2-dideoxyribofuranose with boronic acids. Title 5-arylthiophene C-nucleosides 6 exhibit interesting fluorescent properties with emission maxima varying from 339 to 396 nm depending on the aryl group attached.
The synthesis of the title 2'-deoxyadenosine derivatives bearing bipyridine, phenanthroline or terpyridine ligands and their corresponding RuII-complexes in position 8 linked via acetylene or phenylene tethers was accomplished through cross-coupling reactions. The Suzuki-Miyaura reactions of boronic acids or the Sonogashira reactions of terminal acetylene derivatives of oligopyridine ligands were performed either on protected 8-bromoadenosines in organic solvents or, more efficiently, directly on unprotected nucleosides in aqueous acetonitrile or DMF. Direct cross-coupling reactions of unprotected nucleosides with RuII-complexes or the oligopyridine-boronic acids or -acetylenes gave the Ru-labelled nucleosides in one step in fair to good yields. This method was also proven to be applicable for direct Ru-labelling of dATP. Terpyridine-containing 2'-deoxyadenosine exerted significant antiviral and cytostatic effects.
- MeSH
- antivirové látky chemická syntéza chemie toxicita MeSH
- deoxyadenosiny chemická syntéza chemie toxicita MeSH
- difrakce rentgenového záření MeSH
- financování organizované MeSH
- Hepacivirus účinky léků MeSH
- ligandy MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- protinádorové látky chemická syntéza chemie toxicita MeSH
- pyridiny chemie MeSH
- reagencia zkříženě vázaná chemie MeSH
- sloučeniny ruthenia chemie MeSH
A novel modular and practical methodology for preparation of 6-substituted pyridin-3-yl C-nucleosides was developed. The Heck reaction of 2-chloro-5-iodopyridine with a 3'-TBDMS-protected glycal gave a 6-chloropyridin-3-yl nucleoside analogue, which was then desilylated, selectively reduced, and reprotected to give the TBDMS-protected 6-chloropyridin-3-yl C-2'-deoxyribonucleoside as a pure beta-anomer in a total yield of 39% over four steps. This key intermediate was then subjected to a series of palladium-catalyzed cross-coupling reactions, aminations, and alkoxylations to give a series of protected 1beta-(6-alkyl-, 6-aryl-, 6-hetaryl, 6-amino-, and 6-tert-butoxypyridin-3-yl)-2'-deoxyribonucleosides. 6-Unsubstituted pyridin-3-yl C-nucleoside was prepared by catalytic hydrogenation of the chloro derivative and 6-oxopyridine C-nucleoside by treatment of the 6-tert-butoxy derivative with TFA. Deprotection of all the silylated nucleosides by Et3N.3HF gave a series of free C-nucleosides (10 examples).