Q136158700
Dotaz
Zobrazit nápovědu
Ictal central apnoea is a feature of focal temporal seizures. It is implicated as a risk factor for sudden unexpected death in epilepsy (SUDEP). Here we study seizure-related apnoeas in two different models of experimental seizures, one chronic and one acute, in adult genetically-unmodified rats, to determine mechanisms of seizure-related apnoeas. Under general anaesthesia rats receive sensors for nasal temperature, hippocampal and/or neocortical potentials, and ECG or EMG for subsequent tethered video-telemetry. Tetanus neurotoxin (TeNT), injected into hippocampus during surgery, induces a chronic epileptic focus. Other implanted rats receive intraperitoneal pentylenetetrazol (PTZ) to evoke acute seizures. In chronically epileptic rats, convulsive seizures cause apnoeas (9.9 ± 5.3 s; 331 of 730 convulsive seizures in 15 rats), associated with bradyarrhythmias. Absence of EEG and ECG biomarkers exclude obstructive apnoeas. All eight TeNT-rats with diaphragm EMG have apnoeas with no evidence of obstruction, and have apnoea EMGs significantly closer to expiratory relaxation than inspiratory contraction during pre-apnoeic respiration, which we term "atonic diaphragm". Consistent with atonic diaphragm is that the pre-apnoeic nasal airflow is expiration, as it is in human ictal central apnoea. Two cases of rat sudden death occur. One, with telemetry to the end, reveals a lethal apnoea, the other only has video during the final days, which reveals cessation of breathing shortly after the last clonic epileptic movement. Telemetry following acute systemic PTZ reveals repeated seizures and seizure-related apnoeas, culminating in lethal apnoeas; ictal apnoeas are central - in 8 of 35 cases diaphragms initially contract tonically for 8.5 ± 15.0 s before relaxing, in the 27 remaining cases diaphragms are atonic throughout apnoeas. All terminal apnoeas are atonic. Differences in types of apnoea due to systemic PTZ in rats (mainly atonic) and mice (tonic) are likely species-specific. Certain genetic mouse models have apnoeas caused by tonic contraction, potentially due to expression of epileptogenic mutations throughout the brain, including in respiratory centres, in contrast with acquired focal epilepsies. We conclude that ictal apnoeas in the rat TeNT model result from atonic diaphragms. Relaxed diaphragms could be particularly helpful for therapeutic stimulation of the diaphragm to help restore respiration.
- MeSH
- apnoe patofyziologie MeSH
- bránice * patofyziologie MeSH
- chronická nemoc MeSH
- elektroencefalografie MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech * MeSH
- pentylentetrazol toxicita MeSH
- potkani Sprague-Dawley MeSH
- relaxace svalu fyziologie MeSH
- tetanový toxin toxicita MeSH
- záchvaty * patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Despite extensive temporal lobe epilepsy (TLE) research, understanding the specific limbic structures' roles in seizures remains limited. This weakness can be attributed to the complex nature of TLE and the existence of various TLE subsyndromes, including non-lesional TLE. Conventional TLE models like kainate and pilocarpine hinder precise assessment of the role of individual limbic structures in TLE ictogenesis due to widespread limbic damage induced by the initial status epilepticus. In this study, we used a non-lesional TLE model characterized by the absence of initial status and cell damage to determine the spatiotemporal profile of seizure initiation and limbic structure recruitment in TLE. Epilepsy was induced by injecting a minute dose of tetanus toxin into the right dorsal hippocampus in seven animals. Following injection, animals were implanted with bipolar recording electrodes in the amygdala, dorsal hippocampus, ventral hippocampus, piriform, perirhinal, and entorhinal cortices of both hemispheres. The animals were video-EEG monitored for four weeks. In total, 140 seizures (20 seizures per animal) were analyzed. The average duration of each seizure was 53.2+/-3.9 s. Seizure could initiate in any limbic structure. Most seizures initiated in the ipsilateral (41 %) and contralateral (18 %) ventral hippocampi. These two structures displayed a significantly higher probability of seizure initiation than by chance. The involvement of limbic structures in seizure initiation varied between individual animals. Surprisingly, only 7 % of seizures initiated in the injected dorsal hippocampus. The limbic structure recruitment into the seizure activity wasn't random and displayed consistent patterns of early recruitment of hippocampi and entorhinal cortices. Although ventral hippocampus represented the primary seizure onset zone, the study demonstrated the involvement of multiple limbic structures in seizure initiation in a non-lesional TLE model. The study also revealed the dichotomy between the primary epileptogenic lesion and main seizure onset zones and points to the central role of ventral hippocampi in temporal lobe ictogenesis.
- MeSH
- elektroencefalografie MeSH
- epilepsie temporálního laloku * chemicky indukované patofyziologie patologie MeSH
- hipokampus účinky léků patologie MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech * MeSH
- potkani Sprague-Dawley MeSH
- tetanový toxin * toxicita MeSH
- záchvaty * chemicky indukované patofyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Lithium is an effective mood stabilizer, but the mechanism of its therapeutic action is not well understood. We investigated the effect of lithium on the circadian clock located in the ventricle barrier complex containing the choroid plexus (CP), a part of the glymphatic system that influences gross brain function via the production of cerebrospinal fluid. The mPer2Luc mice were injected with lithium chloride (LiCl) or vehicle, and their effects on the clock gene Nr1d1 in CP were detected by RT qPCR. CP organotypic explants were prepared to monitor bioluminescence rhythms in real time and examine the responses of the CP clock to LiCl and inhibitors of glycogen synthase kinase-3 (CHIR-99021) and protein kinase C (chelerythrine). LiCl affected Nr1d1 expression levels in CP in vivo and dose-dependently delayed the phase and prolonged the period of the CP clock in vitro. LiCl and CHIR-99021 had different effects on 1] CP clock parameters (amplitude, period, phase), 2] dexamethasone-induced phase shifts of the CP clock, and 3] dynamics of PER2 degradation and de novo accumulation. LiCl-induced phase delays were significantly reduced by chelerythrine, suggesting the involvement of PKC activity. The effects on the CP clock may be involved in the therapeutic effects of lithium and hypothetically improve brain function in psychiatric patients by aligning the function of the CP clock-related glymphatic system with the sleep-wake cycle. Importantly, our data argue for personalized timing of lithium treatment in BD patients.
- MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period genetika MeSH
- cirkadiánní rytmus genetika MeSH
- lithium farmakologie MeSH
- myši MeSH
- plexus chorioideus metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: Circadian clocks in the hippocampus (HPC) align memory processing with appropriate time of day. Our study was aimed at ascertaining the specificity of glycogen synthase kinase 3-beta (GSK3β)- and glucocorticoid (GC)-dependent pathways in the entrainment of clocks in individual HPC regions, CA1-3, and dentate gyrus (DG). METHODS: The role of GCs was addressed in vivo by comparing the effects of adrenalectomy (ADX) and subsequent dexamethasone (DEX) supplementation on clock gene expression profiles (Per1, Per2, Nr1d1, and Bmal1). In vitro the effects of DEX and the GSK3β inhibitor, CHIR-99021, were assessed from recordings of bioluminescence rhythms in HPC organotypic explants of mPER2Luc mice. RESULTS: Circadian rhythms of clock gene expression in all HPC regions were abolished by ADX, and DEX injections to the rats rescued those rhythms in DG. The DEX treatment of the HPC explants significantly lengthened periods of the bioluminescence rhythms in all HPC regions with the most significant effect in DG. In contrast to DEX, CHIR-99021 significantly shortened the period of bioluminescence rhythm. Again, the effect was most significant in DG which lacks the endogenously inactivated (phosphorylated) form of GSK3β. Co-treatment of the explants with CHIR-99021 and DEX produced the CHIR-99021 response. Therefore, the GSK3β-mediated pathway had dominant effect on the clocks. CONCLUSION: GSK3β- and GC-dependent pathways entrain the clock in individual HPC regions by modulating their periods in an opposite manner. The results provide novel insights into the mechanisms connecting the arousal state-relevant signals with temporal control of HPC-dependent memory and cognitive functions.
- MeSH
- cirkadiánní hodiny * genetika MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- cirkadiánní rytmus MeSH
- glukokortikoidy metabolismus farmakologie MeSH
- gyrus dentatus metabolismus MeSH
- hipokampus metabolismus MeSH
- kinasa 3 glykogensynthasy metabolismus farmakologie MeSH
- kinasa glykogensynthasy 3beta metabolismus MeSH
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The epithelial cells of choroid plexus (CP) in brain ventricles produce cerebrospinal fluid and act as the blood-cerebrospinal fluid barrier. In this study, we confirmed that CP in the 4th ventricle is composed of cellular oscillators that all harbor glucocorticoid receptors and are mutually synchronized to produce a robust clock gene expression rhythm detectable at the tissue level in vivo and in vitro. Animals lacking glucocorticoids (GCs) due to surgical removal of adrenal glands had Per1, Per2, Nr1d1 and Bmal1 clock gene rhythmicity in their CP significantly dampened, whereas subjecting them to daily bouts of synthetic GC analog, dexamethasone (DEX), reinforced those rhythms. We verified these in vivo effects using an in vitro model of organotypic CP explants; depending on the time of its application, DEX significantly increased the amplitude and efficiently reset the phase of the CP clock. The results are the first description of a PRC for a non-neuronal clock in the brain, demonstrating that CP clock shares some properties with the non-neuronal clocks elsewhere in the body. Finally, we found that DEX exhibited multiple synergic effects on the CP clock, including acute activation of Per1 expression and change of PER2 protein turnover rate. The DEX-induced shifts of the CP clock were partially mediated via PKA-ERK1/2 pathway. The results provide the first evidence that the GC rhythm strengthens and entrains the clock in the CP helping thus fine-tune the brain environment according to time of day.
- MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period genetika metabolismus MeSH
- dexamethason MeSH
- glukokortikoidy metabolismus MeSH
- MAP kinasový signální systém MeSH
- nadledviny metabolismus MeSH
- nucleus suprachiasmaticus metabolismus MeSH
- plexus chorioideus metabolismus MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: The maternal part of the rodent placenta harbors a circadian clock which robustly responds to glucocorticoids, however, its sensitivity to other hormones has not been elucidated. In this study, we tested five selected hormones (dopamine, melatonin, insulin, leptin and ghrelin) for their effectiveness to affect the clock in decidual region of mouse placenta in vitro. METHODS: We administered the hormones or corresponding vehicles at various time points over 24 h to organotypic placental explants of mPer2Luc mice containing the decidua basalis (DB) region and monitored their effects on amplitude, period, median expression level (mesor) and phase of PER2-driven bioluminescence rhythms. RESULTS: Dopamine significantly increased the amplitude, robustly dampened the mesor, and during a narrow time interval (corresponding to daytime) induced phase delays of the rhythms. In contrast, melatonin had no effect on amplitude, but induced phase advances of the rhythms at the opposite time window than dopamine (corresponding to nighttime). Leptin and ghrelin, but not insulin, slightly increased amplitudes and moderately modulated phase delays of the clock, suggesting that the DB clock, in contrast to other peripheral clocks, is rather resilient to abrupt changes in levels of feeding- and metabolism-related hormones. DISCUSSION: The results demonstrate for the first time that dopamine and melatonin exhibit delicate yet specific effects on parameters of the DB clock and may thus potentially contribute to fine-tuning of its phase under in vivo conditions. It also implies that dysregulation of their levels, which accompany various pathologies, may account for malfunction of the clock in DB.
- MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní rytmus * MeSH
- dopamin fyziologie MeSH
- hormony fyziologie MeSH
- myši MeSH
- placenta metabolismus MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Suprachiasmatic nucleus (SCN) of the hypothalamus is the master clock that drives circadian rhythms in physiology and behavior and adjusts their timing to external cues. Neurotransmitter glutamate and glutamatergic receptors sensitive to N-methyl-d-aspartate (NMDA) play a dual role in the SCN by coupling astrocytic and neuronal single cell oscillators and by resetting their phase in response to light. Recent reports suggested that signaling by endogenous cannabinoids (ECs) participates in both of these functions. We have previously shown that ECs, such as 2-arachidonoylglycerol (2-AG), act via CB1 receptors to affect the SCN response to light-mimicking NMDA stimulus in a time-dependent manner. We hypothesized that this ability is linked to the circadian regulation of EC signaling. We demonstrate that circadian clock in the rat SCN regulates expression of 2-AG transport, synthesis and degradation enzymes as well as its receptors. Inhibition of the major 2-AG synthesis enzyme, diacylglycerol lipase, enhanced the phase delay and lowered the amplitude of explanted SCN rhythm in response to NMDAR activation. Using microscopic PER2 bioluminescence imaging, we visualized how individual single cell oscillators in different parts of the SCN respond to the DAGL inhibition/NMDAR activation and shape response of the whole pacemaker. Additionally, we present strong evidence that the zero amplitude behavior of the SCN in response to single NMDA stimulus in the middle of subjective night is the result of a loss of rhythm in individual SCN cells. The paper provides new insights into the modulatory role of endocannabinoid signaling during the light entrainment of the SCN.
- MeSH
- agonisté excitačních aminokyselin farmakologie MeSH
- cirkadiánní rytmus účinky léků fyziologie MeSH
- endokanabinoidy fyziologie MeSH
- krysa rodu rattus MeSH
- lipoproteinlipasa antagonisté a inhibitory metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- N-methylaspartát farmakologie MeSH
- nucleus suprachiasmaticus cytologie účinky léků fyziologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During fetal stage, maternal circadian system sets the phase of the developing clock in the suprachiasmatic nuclei (SCN) via complex pathways. We addressed the issue of how impaired maternal signaling due to a disturbed environmental light/dark (LD) cycle affects the fetal SCN. We exposed pregnant Wistar rats to two different challenges - a 6-h phase shift in the LD cycle on gestational day 14, or exposure to constant light (LL) throughout pregnancy - and detected the impact on gene expression profiles in 19-day-old fetuses. The LD phase shift, which changed the maternal SCN into a transient state, caused robust downregulation of expression profiles of clock genes (Per1, Per2, and Nr1d1), clock-controlled (Dbp) genes, as well as genes involved in sensing various signals, such as c-fos and Nr3c1. Removal of the rhythmic maternal signals via exposure of pregnant rats to LL abolished the rhythms in expression of c-fos and Nr3c1 in the fetal SCN. We identified c-fos as the gene primarily responsible for sensing rhythmic maternal signals because its expression profile tracked the shifted or arrhythmic maternal SCN clock. Pathways related to the maternal rhythmic behavioral state were likely not involved in driving the c-fos expression rhythm. Instead, introduction of a behavioral rhythm to LL-exposed mothers via restricted feeding regime strengthened rhythm in Vip expression in the fetal SCN. Our results revealed for the first time that the fetal SCN is highly sensitive in a gene-specific manner to various changes in maternal signaling due to disturbances of environmental cycles related to the modern lifestyle in humans.
- Publikační typ
- časopisecké články MeSH
The adult circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is resilient to glucocorticoids (GCs). The fetal rodent SCN resembles that of the adult in its organization of GC-sensitive peripheral tissues. We tested the hypothesis that the fetal SCN clock is sensitive to changes in GC levels. Maternal GCs must pass through the placenta to reach the fetal SCN. We show that the maternal but not the fetal part of the placenta harbors the autonomous circadian clock, which is reset by dexamethasone (DEX) and rhythmically expresses Hsd11b2. The results suggest the presence of a mechanism for rhythmic GC passage through the placental barrier, which is adjusted according to actual GC levels. GC receptors are expressed rhythmically in the laser-dissected fetal SCN samples. We demonstrate that hypothalamic explants containing the SCN of the mPer2 Luc mouse prepared at embryonic day (E)15 spontaneously develop rhythmicity within several days of culture, with dynamics varying among fetuses from the same litter. Culturing these explants in media enriched with DEX accelerates the development. At E17, treatment of the explants with DEX induces phase advances and phase delays of the rhythms depending on the timing of treatments, and the shifts are completely blocked by the GC receptor antagonist, mifepristone. The DEX-induced phase-response curve differs from that induced by the vehicle. The fetal SCN is sensitive to GCs in vivo because DEX administration to pregnant rats acutely downregulates c-fos expression specifically in the laser-dissected fetal SCN. Our results provide evidence that the rodent fetal SCN clock may respond to changes in GC levels.
- MeSH
- cirkadiánní hodiny účinky léků genetika fyziologie MeSH
- cirkadiánní proteiny Period genetika MeSH
- dexamethason farmakologie MeSH
- glukokortikoidy farmakologie fyziologie MeSH
- hypothalamus fyziologie MeSH
- krysa rodu rattus MeSH
- myši MeSH
- nucleus suprachiasmaticus účinky léků fyziologie MeSH
- placenta fyziologie MeSH
- plod fyziologie MeSH
- těhotenství MeSH
- vývoj plodu * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Animals create implicit memories of the time of day that significant events occur then anticipate the recurrence of those conditions at the same time on subsequent days. We tested the hypothesis that implicit time memory for daily encounters relies on the setting of the canonical circadian clockwork in brain areas involved in the formation or expression of context memories. We conditioned mice to avoid locations paired with a mild foot shock at one of two Zeitgeber times set 8 hours apart. Place avoidance was exhibited only when testing time matched the prior training time. The suprachiasmatic nucleus, dorsal striatum, nucleus accumbens, cingulate cortex, hippocampal complex, and amygdala were assessed for clock gene expression. Baseline phase dependent differences in clock gene expression were found in most tissues. Evidence for conditioned resetting of a molecular circadian oscillation was found only in the striatum (dorsal striatum and nucleus accumbens shell), and specifically for Per2 expression. There was no evidence of glucocorticoid stress response in any tissue. The results are consistent with a model where temporal conditioning promotes a selective Per2 response in dopamine-targeted brain regions responsible for sensorimotor integration, without resetting the entire circadian clockwork.
- MeSH
- čas MeSH
- cirkadiánní hodiny * MeSH
- cirkadiánní proteiny Period biosyntéza MeSH
- corpus striatum fyziologie MeSH
- exprese genu * MeSH
- messenger RNA biosyntéza MeSH
- modely neurologické MeSH
- myši inbrední C57BL MeSH
- podmiňování (psychologie) * MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH