Q48005439
Dotaz
Zobrazit nápovědu
A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.
- MeSH
- buněčné linie MeSH
- Drosophila genetika MeSH
- enzymatické testy MeSH
- glutamátkarboxypeptidasa II antagonisté a inhibitory chemie metabolismus MeSH
- inhibitory proteas chemická syntéza chemie metabolismus MeSH
- karbamáty chemická syntéza chemie metabolismus MeSH
- katalytická doména MeSH
- kvantová teorie MeSH
- lidé MeSH
- močovina analogy a deriváty chemická syntéza chemie metabolismus MeSH
- molekulární modely MeSH
- stereoizomerie MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
To find and calibrate a robust and reliable computational protocol for mapping conformational space of medium-sized molecules, exhaustive conformational sampling has been carried out for a series of seven macrocyclic compounds of varying ring size and one acyclic analogue. While five of them were taken from the MD/LLMOD/force field study by Shelley and co-workers ( Watts , K. S. ; Dalal , P. ; Tebben , A. J. ; Cheney , D. L. ; Shelley , J. C. Macrocycle Conformational Sampling with MacroModel . J. Chem. Inf. MODEL: 2014 , 54 , 2680 - 2696 ), three represent potential macrocyclic inhibitors of human cyclophilin A. The free energy values (GDFT/COSMO-RS) for all of the conformers of each compound were obtained by a composite protocol based on in vacuo quantum mechanics (DFT-D3 method in a large basis set), standard gas-phase thermodynamics, and the COSMO-RS solvation model. The GDFT/COSMO-RS values were used as the reference for evaluating the performance of conformational sampling algorithms: standard and extended MD/LLMOD search (simulated-annealing molecular dynamics with low-lying eigenvector following algorithms, employing the OPLS2005 force field plus GBSA solvation) available in MacroModel and plain molecular dynamics (MD) sampling at high temperature (1000 K) using the semiempirical quantum mechanics (SQM) potential SQM(PM6-D3H4/COSMO) followed by energy minimization of the snapshots. It has been shown that the former protocol (MD/LLMOD) may provide a more complete set of initial structures that ultimately leads to the identification of a greater number of low-energy conformers (as assessed by GDFT/COSMO-RS) than the latter (i.e., plain SQM MD). The CPU time needed to fully evaluate one medium-sized compound (∼100 atoms, typically resulting in several hundred or a few thousand conformers generated and treated quantum-mechanically) is approximately 1,000-100,000 CPU hours on today's computers, which transforms to 1-7 days on a small-sized computer cluster with a few hundred CPUs. Finally, our data sets based on the rigorous quantum-chemical approach allow us to formulate a composite conformational sampling protocol with multiple checkpoints and truncation of redundant structural data that offers superior insights at affordable computational cost.
- MeSH
- algoritmy MeSH
- kalibrace MeSH
- krystalografie MeSH
- kvantová teorie MeSH
- makrocyklické sloučeniny chemie MeSH
- molekulární konformace * MeSH
- rychlé screeningové testy MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
In this minireview, we provide an account of the current state-of-the-art developments in the area of mono- and binuclear non-heme enzymes (NHFe and NHFe2) and the smaller NHFe(2) synthetic models, mostly from a theoretical and computational perspective. The sheer complexity, and at the same time the beauty, of the NHFe(2) world represents a challenge for experimental as well as theoretical methods. We emphasize that the concerted progress on both theoretical and experimental side is a conditio sine qua non for future understanding, exploration and utilization of the NHFe(2) systems. After briefly discussing the current challenges and advances in the computational methodology, we review the recent spectroscopic and computational studies of NHFe(2) enzymatic and inorganic systems and highlight the correlations between various experimental data (spectroscopic, kinetic, thermodynamic, electrochemical) and computations. Throughout, we attempt to keep in mind the most fascinating and attractive phenomenon in the NHFe(2) chemistry, which is the fact that despite the strong oxidative power of many reactive intermediates, the NHFe(2) enzymes perform catalysis with high selectivity. We conclude with our personal viewpoint and hope that further developments in quantum chemistry and especially in the field of multireference wave function methods are needed to have a solid theoretical basis for the NHFe(2) studies, mostly by providing benchmarking and calibration of the computationally efficient and easy-to-use DFT methods.
- MeSH
- kvantová teorie * MeSH
- lidé MeSH
- nehemové proteiny obsahující železo chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Phosphodiester bond cleavage is one of the most important processes in all living systems. Cell regulation is based on the effective and selective P–O bond cleavage, which is achieved by natural enzymes – phosphodiesterases. Some enzymes of this group rank among the most efficient known. The structure of these enzymes and their mechanism of action are important for designing the artificial enzyme models capable of catalyzing P–O bond cleavage. The present review summarizes the current approaches leading to synthesis of enzyme models and provides a comprehensive overview of the most important systems that have been synthesized and studied.
- Klíčová slova
- štěpení fosfoesterové vazby,
- MeSH
- chemické modely * MeSH
- esterasy * chemie MeSH
- fosfodiesterasy * chemie MeSH
- hydrolýza MeSH
- organofosforové sloučeniny chemie MeSH
- Publikační typ
- přehledy MeSH