Q50171408 Dotaz Zobrazit nápovědu
Cyclophilin D (CypD) is a mitochondrial enzyme widely accepted as a regulator of the mitochondrial permeability transition pore (mPTP). Excessive opening of mPTP is associated with mitochondrial dysfunction and the development of various diseases; thus, suppression of mPTP opening through CypD inhibition presents a promising therapeutic approach. However, only a limited number of selective CypD inhibitors are currently available. In this study, 10 derivatives of 2-(benzyloxy)arylurea similar or identical to previously published CypD/mPTP inhibitors were synthesized. Unlike the original reports that assessed the opening of mPTP at the cellular level, the compounds were tested directly on the purified CypD enzyme to validate their putative mechanism of action. Additionally, the effect of the selected compounds was tested on isolated mitochondria. The obtained results show that the compounds are only weak inhibitors of CypD and mPTP opening, which is in contrast to previous conclusions drawn from the unspecific cellular JC-1 assay.
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
Growing evidence of antibiotic-resistant pathogens is a serious medical issue that has to be addressed. Our antimicrobial research is focused on searching for novel small molecules that differ from the most clinically used antibiotics by chemical structure and mechanism. However, this fundamental research is like looking for a needle in a haystack. In addition, in vitro methods are time-consuming and expensive to screen large number of compounds in reasonable time. Off-target screening can represent a solution to find novel and effective antimicrobial agents that can eliminate these problems. Accordingly, molecular docking in the family of selected frentizole derivatives predicted their potential to inhibit bacterial nicotinate mononucleotide adenylyltransferase (NadD). This bacterial-essential specific enzyme has an important role in NAD metabolism. Thus, underlying mechanism of antimicrobials derived from frentizole would be interference with this biochemical process. Unfortunately, broth microdilution assay did not display any antimicrobial activity of tested compounds. On the other hand, herein we propose that off-target screening can facilitate searching for new drugs and that NadD could be a relevant target for antimicrobials.
- MeSH
- antiinfekční látky * chemie MeSH
- Bacteria MeSH
- benzothiazoly chemie MeSH
- indikátorové diluční techniky MeSH
- inhibitory enzymů chemie MeSH
- lidé MeSH
- nikotinamidnukleotidadenylyltransferasa * antagonisté a inhibitory MeSH
- simulace molekulového dockingu MeSH
- techniky in vitro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
Background: The mitochondrial enzyme amyloid beta-binding alcohol dehydrogenase (ABAD) also known as 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) has been connected with the pathogenesis of Alzheimer's disease (AD). ABAD/ 17β-HSD10 is a binding site for the amyloid-beta peptide (Aβ) inside the mitochondrial matrix where it exacerbates Aβ toxicity. Interaction between these two proteins triggers a series of events leading to mitochondrial dysfunction as seen in AD. Methods: As ABAD's enzymatic activity is required for mediating Aβ toxicity, its inhibition presents a promising strategy for AD treatment. In this study, a series of new benzothiazolylurea analogues have been prepared and evaluated in vitro for their potency to inhibit ABAD/ 17β-HSD10 enzymatic activity. The most potent compounds have also been tested for their cytotoxic properties and their ability to permeate through blood-brain barrier has been predicted. To explain the structure-activity relationship QSAR and pharmacophore studies have been performed. Results and conclusions: Compound 12 was identified being the most promising hit compound with good inhibitory activity (IC50 = 3.06 ± 0.40μM) and acceptable cytotoxicity profile comparable to the parent compound of frentizole. The satisfactory physical-chemical properties suggesting its capability to permeate through BBB make compound 12 a novel lead structure for further development and biological assessment.
- MeSH
- Alzheimerova nemoc * farmakoterapie MeSH
- benzothiazoly terapeutické užití MeSH
- guanidin terapeutické užití MeSH
- inhibitory enzymů chemická syntéza terapeutické užití MeSH
- lidé MeSH
- močovina terapeutické užití MeSH
- neuroprotektivní látky * chemická syntéza terapeutické užití MeSH
- oxidoreduktasy antagonisté a inhibitory škodlivé účinky MeSH
- příprava léků metody MeSH
- techniky in vitro metody MeSH
- thiomočovina terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- klinická studie MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH