Q57391656
      
        
           Dotaz
           
        
   Zobrazit nápovědu
   
      
        
    
    
        
    
  
In magnetic resonance imaging (MRI), paramagnetic complexes are utilized as contrast agents. Much attention has been paid to the development of new contrast agents responsive to pH, temperature or concentration of various components of body liquids. We report a new type of MRI probe sensing the concentrations of calcium and magnesium in biological media. The ligand do3ap(BP) combines a dota-like chelator with a bisphosphonate group. In the complex, the Gd(III) ion is entrapped in the macrocyclic cavity whereas the bisphosphonate group is not coordinated and therefore is available for coordination with endogenous metal ions. In the presence of metal ions, Gd-do3ap(BP) appears to show formation of coordination oligomers leading to an unprecedented increase in r(1) up to 200-500%. The extremely high relaxivity response makes this type of compound interesting for further studies as MRI ion-responsive probes for biomedical research.
A new phosphinic-acid DOTA-like ligand, DO3AP(BP), containing a geminal bis(phosphonic acid) moiety as a highly effective bone-seeking group, was synthesized in high yield. Its crystal structure was determined by X-ray analysis. Complexation with lanthanide(iii) ions occurs under mild conditions (pH = 8-9, 25 degrees C, 2-3 h). (1)H, (31)P, and (17)O NMR spectroscopy show that DO3AP(BP) forms nine-coordinated lanthanide(iii) complexes with one water molecule in the first coordination sphere except for Ln = Er-Lu, which have in addition a species without lanthanide(iii)-bound water. Selective formation of only two diastereomers (out of four possible) suggests that the coordinated phosphinate phosphorus atom occurs exclusively in one of the enantiomeric forms. The ratio of the twisted square antiprism (TSA) and square antiprism (SA) diastereomers changes along the lanthanide series; the gadolinium(iii) complex has about 35% of the TSA species. The bis(phosphonate) moiety remains free for anchoring to osseous tissue. The (1)H longitudinal relaxivity of the Gd-DO3AP(BP) complex (r(1) = 7.4 s(-1) mM(-1), 20 MHz, 25 degrees C, pH = 7.5) is unexpectedly high compared to that of other monohydrated chelates of similar size thanks to a significant contribution from the second hydration sphere. The water residence time tau(M)(298) is 198 ns. Further increase in the relaxivity was observed in the presence of Zn(ii), Mg(ii) or Ca(ii) ions, due to formation of coordination polymers. Slowing down of the tumbling rate of the Gd-DO3AP(BP) complex upon adsorption on hydroxyapatite also leads to an increase of the relaxivity (r(1) = 17 s(-1) mM(-1), 20 MHz, 25 degrees C, pH = 7.5).
- MeSH
 - chelátory chemie MeSH
 - diagnostické zobrazování metody MeSH
 - financování organizované MeSH
 - gadolinium chemie MeSH
 - heterocyklické sloučeniny monocyklické chemie MeSH
 - hydroxyapatit MeSH
 - kalcinóza patologie radiografie radioterapie MeSH
 - kontrastní látky chemie MeSH
 - kosti a kostní tkáň cytologie metabolismus MeSH
 - krystalografie rentgenová MeSH
 - lanthanoidy chemie MeSH
 - molekulární struktura MeSH
 - organofosfonáty chemie MeSH