BACKGROUND: African catfishes of the families Bagridae and Clariidae are known to be parasitized with monogeneans of Quadriacanthus Paperna, 1961 (Dactylogyridae). The genus remains taxonomically challenging due to its speciose nature and relatively wide host range representing two fish orders, i.e. Siluriformes and Osteoglossiformes, in Africa and Asia. Here, we investigated diversity of Quadriacanthus spp. parasitizing Clarias gariepinus (Burchell), Heterobranchus bidorsalis Geoffroy Saint-Hilaire, and Bagrus docmak (Forsskål) collected in the Lake Turkana (Kenya) and Nile River Basin (Sudan). The interspecific relationships among Quadriacanthus spp. parasitizing catfishes inferred from ribosomal DNA sequences were investigated for the first time. METHODS: A combined morphological and molecular approach was used for description of the new species and for a critical review of the previously described Quadriacanthus spp., by means of phase contrast microscopic examination of sclerotized structures, and assessing the genetic divergence among the species found using rDNA sequences. RESULTS: Seven species (including four new) of Quadriacanthus were identified. These were as follows: Quadriacanthus aegypticus El-Naggar & Serag, 1986, Quadriacanthus clariadis Paperna, 1961, Quadriacanthus fornicatus n. sp., Quadriacanthus pravus n. sp., and Quadriacanthus zuheiri n. sp. from Clarias gariepinus (Clariidae); Quadriacanthus mandibulatus n. sp. from Heterobranchus bidorsalis (Clariidae); and Quadriacanthus bagrae Paperna, 1979 from Bagrus docmak (Bagridae). For both 18S-ITS1 and 28S rDNA regions, Q. clariadis from a clariid fish was found to be most closely related to Q. bagrae from a bagrid host. Quadriacanthus mandibulatus n. sp. was observed to be the most distant species from the others. The separation of Q. mandibulatus n. sp. from the other species corresponds with the different morphology of its copulatory tube. The copulatory tube is terminally enlarged in Q. mandibulatus n. sp., while the tube in all other congeners studied is comparatively small and with an oblique tapering termination. CONCLUSIONS: This study contributes to a better understanding of African dactylogyrid diversity and provides the first molecular characterization of Quadriacanthus spp. The observed interspecific genetic relationships among Quadriacanthus spp. from clariids and Q. bagrae from a bagrid host suggest a possible host-switching event in the evolutionary history of the genus. Our records extend the currently known geographical range for Quadriacanthus spp. to Kenya and Sudan.
- MeSH
- Phylogeny MeSH
- Trematode Infections epidemiology parasitology veterinary MeSH
- Lakes parasitology MeSH
- Fish Diseases epidemiology parasitology MeSH
- Platyhelminths classification genetics isolation & purification MeSH
- Rivers parasitology MeSH
- DNA, Ribosomal MeSH
- Catfishes parasitology MeSH
- Trematoda genetics MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Asia epidemiology MeSH
- Kenya epidemiology MeSH
- Sudan epidemiology MeSH
- Africa, Eastern epidemiology MeSH
BACKGROUND: Lake Tana is the largest lake in Ethiopia and the source of the Blue Nile. The lake harbours unique endemic cyprinid fish species, as well as the commercially important endemic Nile tilapia subspecies Oreochromis niloticus tana and the North African catfish Clarias gariepinus. Its endemicity, especially within the Labeobarbus radiation, its conservation importance and its economic indispensability attract scientific interest to the lake's ichthyofauna. Fish parasites of Lake Tana, however, are hitherto poorly known, and no formal report exists on its monogenean flatworms. For sustainable aquaculture and fisheries development, it is essential to study monogenean fish parasites in these economically most important fish species. Moreover, it remains to be verified whether this unique ecosystem and its endemicity gave rise to a distinct parasite fauna as well. RESULTS: Nile tilapia and North African catfish hosts were collected from Lake Tana in 2013. Nine species of monogenean parasites of two orders, Gyrodactylidea Bychowsky, 1937 and Dactylogyridea Bychowsky, 1937, were recovered. Gyrodactylus gelnari Přikrylová, Blažek & Vanhove, 2012, Macrogyrodactylus clarii Gussev, 1961, Quadriacanthus aegypticus El-Naggar & Serag, 1986 and two undescribed Quadriacanthus species were recovered from C. gariepinus. Oreochromis niloticus tana hosted Cichlidogyrus cirratus Paperna, 1964, C. halli (Price & Kirk, 1967), C. thurstonae Ergens, 1981 and Scutogyrus longicornis (Paperna & Thurston, 1969). CONCLUSIONS: Except for M. clarii, all species represent new records for Ethiopia. This first study on the monogenean fauna of Lake Tana revealed that the lake's North African catfish, as well as its endemic Nile tilapia subspecies, harbour parasites that are known from these host species elsewhere in Africa.
- MeSH
- Cestode Infections parasitology veterinary MeSH
- Cichlids parasitology MeSH
- Lakes parasitology MeSH
- Fish Diseases parasitology MeSH
- Platyhelminths classification genetics isolation & purification physiology MeSH
- Seafood economics parasitology MeSH
- Catfishes parasitology MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia MeSH
BACKGROUND: African tetras (Alestidae) belonging to Brycinus Valenciennes are known to be parasitized with monogeneans attributed to two genera, Annulotrema Paperna & Thurston, 1969 and Characidotrema Paperna & Thurston, 1968 (Dactylogyridae). During a survey of monogeneans parasitizing alestids, species of Characidotrema were collected in Cameroon, D. R. Congo, Senegal, South Africa, Sudan and Zimbabwe. This paper provides new morphological data and the first molecular analysis broadening our knowledge on the diversity of these parasites. RESULTS: Seven species (four known and three new) of Characidotrema are reported from two species of Brycinus: C. auritum n. sp. and C. vespertilio n. sp. from B. imberi (Peters); and C. brevipenis Paperna, 1969, C. nursei Ergens, 1973, C. pollex n. sp., C. spinivaginus (Paperna, 1973) and C. zelotes Kritsky, Kulo & Boeger, 1987 from B. nurse (Rüppell). Species identification was based on morphological analysis of the sclerotized structures supported by nuclear ribosomal DNA (partial 18S rDNA, ITS1, and 28S rDNA) sequence data. Morphological analysis confirmed that the most apparent character distinguishing species in the genus is the morphology of the male copulatory organ and vagina. Observations on the haptoral sclerotized elements of these parasites by means of phase contrast microscopy revealed the presence of a sheath-like structure relating to the ventral anchor, a feature that supplements the generic diagnosis of Characidotrema. Maximum Likelihood and Bayesian analyses of the large subunit (28S) rDNA sequences recovered Characidotrema species isolated from the two Brycinus hosts as monophyletic, and indicated a closer relationship of this group to monogeneans parasitizing African cyprinids (Dactylogyrus spp.) and cichlids (species of Cichlidogyrus Paperna, 1960, Scutogyrus Pariselle & Euzet, 1995, and Onchobdella Paperna, 1968) than to those from catfishes (species of Quadriacanthus Paperna, 1961, Schilbetrema Paperna & Thurston, 1968 and Synodontella Dossou & Euzet, 1993). The overall agreement between the morphological diversification of the MCOs and the molecular tree observed in this study indicates that significant phylogenetic signals for clarifying relationships among species of Characidotrema are present in the characteristics of the MCO. CONCLUSIONS: It seems that intra-host speciation is an important force shaping the present distribution and diversity of Characidotrema but further studies are necessary to confirm this hypothesis and assess questions related to the phylogeny of these parasites. To identify potential co-speciation events, co-phylogenetic analyses of these monogeneans and their alestid hosts are required.
- MeSH
- Cichlids parasitology MeSH
- Phylogeny * MeSH
- Host-Parasite Interactions * MeSH
- Lakes parasitology MeSH
- Fish Diseases parasitology MeSH
- DNA, Ribosomal genetics MeSH
- Trematoda classification isolation & purification MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Africa South of the Sahara MeSH