A novel method for the extraction of river water contaminants as model analytes of ranging polarities, including bisphenols A, C, S, Z, fenoxycarb, kadethrin, and deltamethrin, using small compact fibrous disks has been developed and validated. Polymer nanofibers and microfibers prepared from poly(3-hydroxybutyrate), polypropylene, polyurethane, polyacrylonitrile, poly(lactic acid), and polycaprolactone doped with graphene were evaluated in terms of extraction efficiency, selectivity, and stability in organic solutions. Our novel extraction procedure comprised preconcentration of analytes from 150 mL river water to 1 mL of eluent using a compact nanofibrous disk freely vortexed in the sample. Small nanofibrous disks with a diameter of 10 mm were cut from a compact and mechanically stable 1-2 mm thick micro/nanofibrous sheet. After 60 min extraction in a magnetically stirred sample located in a beaker, the disk was removed from the liquid and washed with water. Then, the disk was inserted into a 1.5 mL HPLC vial and extracted with 1.0 ml methanol upon short intensive shaking. Our approach avoided the undesired problems related to the manual handling typical of "classical" SPE procedure since the extraction was carried out directly in the HPLC vial. No sample evaporation, reconstitution, or pipetting was required. The nanofibrous disk is affordable, needs no support or holder, and its use avoids creation of plastic waste originating from disposable materials. Recovery of compounds from the disks was 47.2-141.4% depending on the type of polymer used and the relative standard deviations calculated from 5 extractions ranged from 6.1 to 11.8% for poly(3-hydroxybutyrate), 6.3-14.8% for polyurethane, and 1.7-16.2% for polycaprolactone doped with graphene. A small enrichment factor was obtained for polar bisphenol S using all sorbents. A higher preconcentration reaching up to 40-fold was achieved for lipophilic compounds such as deltamethrin when using poly(3-hydroxybutyrate) and graphene-doped polycaprolactone.
- Publication type
- Journal Article MeSH
A rapid and reliable analytical method was developed for the quantitative determination of psychopharmaceuticals, their precursors and by-products in real contaminated samples from a pharmaceutical company in Olomouc (Czech Republic), based on SPE disk extraction and detection by ultra performance liquid chromatography, combined with time-of-flight mass spectrometry. The target compounds were quantified in the real whole-water samples (water including suspended particles), both in the presence of suspended particulate matter (SPM) and high concentrations of other organic pollutants. A total of nine compounds were analyzed which consisted of three commonly used antidepressants (tricyclic antidepressants and antipsychotics), one antitussive agent and five by-products or precursors. At first, the SPE disk method was developed for the extraction of water samples (dissolved analytes, recovery 84-104%) and pressurised liquid extraction technique was verified for solid matrices (sludge samples, recovery 81-95%). In order to evaluate the SPE disk technique for whole water samples containing SPM, non contaminated groundwater samples were also loaded with different amounts (100 and 300mgL(-1)) of real contaminated sludge originating from the same locality. The recoveries from the whole-water samples obtained by SPE disk method ranged between 67 and 119% after the addition of the most contaminated sludge. The final method was applied to several real groundwater (whole-water) samples from the industrial area and high concentrations (up to 10(3)μgL(-1)) of the target compounds were detected. The results of this study document and indicate the feasibility of the SPE disk method for analysis of groundwater.
- MeSH
- Water Pollutants, Chemical analysis MeSH
- Solid Phase Extraction * MeSH
- Mass Spectrometry * MeSH
- Environmental Monitoring instrumentation methods MeSH
- Wastewater chemistry MeSH
- Particulate Matter analysis MeSH
- Groundwater chemistry MeSH
- Psychotropic Drugs analysis MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH