Testate amoebae
Dotaz
Zobrazit nápovědu
Studies on testate amoeba species distribution at small scales (i.e., single peatland sites) are rare and mostly focus on bogs or mineral-poor Sphagnum fens, leaving spatial patterns within mineral-rich fens completely unexplored. In this study, two mineral-rich fen sites of contrasting groundwater chemistry and moss layer composition were selected for the analysis of testate amoeba compositional variance within a single site. At each study site, samples from 20 randomly chosen moss-dominated plots were collected with several environmental variables being measured at each sampling spot. We also distinguished between empty shells and living individuals to evaluate the effect of empty shell inclusion on recorded species distribution. At the heterogeneous-rich Sphagnum-fen, a clear composition turnover in testate amoebae between Sphagnum-dominated and brown moss-dominated samples was closely related to water pH, temperature and redox potential. We also found notable species composition variance within the homogeneous calcareous fen, yet it was not as high as for the former site and the likely drivers of community assembly remained unidentified. The exclusion of empty shells provided more accurate data on species distribution as well as their relationship with some environmental variables, particularly moisture. Small-scale variability in species composition of communities seems to be a worthwhile aspect in testate amoeba research and should be considered in future sampling strategies along with a possible empty shell bias for more precise understanding of testate amoeba ecology and paleoecology.
- MeSH
- Bryophyta růst a vývoj MeSH
- Lobosea klasifikace fyziologie MeSH
- mikrobiota * MeSH
- mokřady MeSH
- půda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity.
- MeSH
- Amoeba genetika MeSH
- ekosystém MeSH
- Eukaryota genetika MeSH
- fylogeneze * MeSH
- genetická variace genetika MeSH
- motýli genetika MeSH
- rašeliníky růst a vývoj MeSH
- rostliny genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Severní Amerika MeSH
Life was microbial for the majority of Earth's history, but as very few microbial lineages leave a fossil record, the Precambrian evolution of life remains shrouded in mystery. Shelled (testate) amoebae stand out as an exception with rich documented diversity in the Neoproterozoic as vase-shaped microfossils (VSMs). While there is general consensus that most of these can be attributed to the Arcellinida lineage in Amoebozoa, it is still unclear whether they can be used as key fossils for interpretation of early eukaryotic evolution. Here, we present a well-resolved phylogenomic reconstruction based on 250 genes, obtained using single-cell transcriptomic techniques from a representative selection of 19 Arcellinid testate amoeba taxa. The robust phylogenetic framework enables deeper interpretations of evolution in this lineage and demanded an updated classification of the group. Additionally, we performed reconstruction of ancestral morphologies, yielding hypothetical ancestors remarkably similar to existing Neoproterozoic VSMs. We demonstrate that major lineages of testate amoebae were already diversified before the Sturtian glaciation (720 mya), supporting the hypothesis that massive eukaryotic diversification took place in the early Neoproterozoic and congruent with the interpretation that VSM are arcellinid testate amoebae.
The community composition of any group of organisms should theoretically be determined by a combination of assembly processes including resource partitioning, competition, environmental filtering, and phylogenetic legacy. Environmental DNA studies have revealed a huge diversity of protists in all environments, raising questions about the ecological significance of such diversity and the degree to which they obey to the same rules as macroscopic organisms. The fast-growing cultivable protist species on which hypotheses are usually experimentally tested represent only a minority of the protist diversity. Addressing these questions for the lesser known majority can only be inferred through observational studies. We conducted an environmental DNA survey of the genus Nebela, a group of closely related testate (shelled) amoeba species, in different habitats within Sphagnum-dominated peatlands. Identification based on the mitochondrial cytochrome c oxidase 1 gene, allowed species-level resolution as well as phylogenetic reconstruction. Community composition varied strongly across habitats and associated environmental gradients. Species showed little overlap in their realized niche, suggesting resource partitioning, and a strong influence of environmental filtering driving community composition. Furthermore, phylogenetic clustering was observed in the most nitrogen-poor samples, supporting phylogenetic inheritance of adaptations in the group of N. guttata. This study showed that the studied free-living unicellular eukaryotes follow to community assembly rules similar to those known to determine plant and animal communities; the same may be true for much of the huge functional and taxonomic diversity of protists.
- MeSH
- ekologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- rašeliníky * MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Quadrulella (Amoebozoa, Arcellinida, Hyalospheniidae) is a genus of testate amoebae with unmistakable morphology, which secretes characteristic square plates to reinforce the test. They are mainly known from fens and freshwater habitats and have never been documented in deserts. We describe a new species, Quadrulella texcalense, from biological soil crusts in the intertropical desert of Tehuacán (state of Puebla, Mexico). Quadrulella texcalense occurred only at altitudes between 2140 and 2221m.a.s.l., together with the bryophyte genera Pseudocrossidium, Weissia, Bryum, Didymodon, Neohyophyla and Aloina. The soil was extremely dry (moisture of 1.97-2.6%), which contrasts sharply with previous reports for the Quadrulella genus. Single cell mitochondrial cytochrome oxidase I (COI) barcoding of thirteen isolated cells showed an important morphological variability despite having all the same COI barcode sequence. Quadrulella texcalense was placed in a tree containing other Hyalsopheniidae, including a newly barcoded South African species, Q. elegans. Q. texcalense unambiguously branched within genus Quadrulella in a compact clade but with a long branch, suggesting accelerated evolution due to a transition towards a new environment and/or under-sampling.
- MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- Lobosea klasifikace cytologie genetika MeSH
- pouštní klima * MeSH
- půda parazitologie MeSH
- respirační komplex IV genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Mexiko MeSH
Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity.
Ecological studies of peatland testate amoebae are generally based on totals of 150 individuals per sample. However, the suitability of this standard has never been assessed for alkaline habitats such as spring fens. We explored the differences in testate amoeba diversity between Sphagnum and brown-moss microhabitats at a mire site with a highly diversified moss layer which reflects the small-scale heterogeneity in groundwater chemistry. Relationships between sampling efficiency and sample completeness were explored using individual-based species accumulation curves and the effort required to gain an extra species was assessed. Testate amoeba diversity differed substantially between microhabitats, with brown mosses hosting on average twice as many species and requiring greater shell totals to reach comparable sample analysis efficiency as for Sphagnum. Thus, for samples from alkaline conditions an increase in shell totals would be required and even an overall doubling up to 300 individuals might be considered for reliable community description. Our small-scale data are likely not robust enough to provide an ultimate solution for the optimization of shell totals. However, the results proved that testate amoebae communities from acidic and alkaline environments differ sharply in both species richness and composition and they might call for different methodological approaches.
The case study targeted to determine the aetiology of nodular gill disease (NGD) of farmed rainbow trout. The methods included microscopical examination of gill material in fresh, culturing of isolated organisms, histology, transmission electron microscopy and molecular biology identification. The results revealed an intravital colonization of fish gills by the testate amoeba Rhogostoma minus Belar, 1921. Rhogostoma infection was found in all fish examined microscopically (15/15); in contrast, naked amoebae related to fully developed NGD lesions were found in minority of these fish (5/15). They belonged to four genera, Acanthamoeba, Vermamoeba, Naegleria and Vannella. Results presented in this study contribute to the mosaic of findings that contrary to amoebic gill disease of marine fish turn attention to the possibility of the heterogeneous, multi-amoeba-species and multifactorial aetiology of NGD.
- MeSH
- amébiáza parazitologie veterinární MeSH
- Cercozoa klasifikace izolace a purifikace fyziologie MeSH
- koinfekce MeSH
- nemoci ryb parazitologie MeSH
- Oncorhynchus mykiss parazitologie MeSH
- žábry parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Testate amoeba (TA) assemblages were collected in 2005 from four ponds in Komořany (Prague, Czech Republic). An analysis of seasonal taxonomic variability of TA populations and its correlation with the limnological characteristics of the area (temperature, pH, total organic carbon, nitrogen, phosphorus, heavy metals, etc.) was performed. The predominant genera were Difflugia, Arcella, and Centropyxis. The most significant changes in the TA community occurred between March and July. Arcella genus dominated in March and April; in May, Arcella and Centropyxis genera were present in the same amount; in June, Arcella genus disappeared, and Difflugia genus started to dominate the community. A multivariate redundancy analysis showed statistically significant correlations between the environmental parameters and the composition of the TA community. The results indicate a negative correlation between TA quantities and Ni, Cd, PAH, Mn, As, and Pb. TA were also affected by concentrations of NH4(+), NO3(-), and P, as well as by temperature variations. The observed correlations between the species composition and environmental parameters can be used in paleoecological interpretations of fossil TA communities. Our results also prove the suitability of TA as water quality indicators in urban areas.
- MeSH
- Amoeba klasifikace izolace a purifikace MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fylogeneze MeSH
- roční období MeSH
- rybníky chemie parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
In all terrestrial ecosystems, testate amoebae (TA) encounter fungi. There are strong indications that both groups engage in multiple interactions, including mycophagy and decomposition of TA shells, processes which might be fundamental in nutrient cycling in certain ecosystems. Here, we present the results of an experiment focusing on interactions between TA and saprotrophic microfungi colonizing Scots pine (Pinus sylvestris L.) litter needles. The needles were collected from a temperate pine forest and cultivated in damp chambers. Over a few weeks, melanized mycelium of Anavirga laxa Sutton started to grow out of some needles; simultaneously, the common forest-soil TA Phryganella acropodia (Hertwig and Lesser) Hopkinson reproduced and spread around the mycelium. We investigated whether a potential relationship between TA and saprotrophic microfungi exists by comparing the composition of TA communities on and around the needles and testing the spatial relationship between the A. laxa mycelium and P. acropodia shells in the experimental microcosm. Additionally, we asked whether P. acropodia utilized the A. laxa mycelium as a nutrient source and screened whether P. acropodia shells were colonized by the microfungi inhabiting the experimental microcosm. Our results indicate that saprotrophic microfungi may affect the composition of TA communities and their mycelium may affect distribution of TA individuals in pine litter. Our observations suggest that P. acropodia did not graze directly on A. laxa mycelium, but rather fed on its exudates or bacteria associated with the exudates. The fungus Pochonia bulbillosa (Gams & Malla) Zare & Gams was often found parasitising encysted shells or decomposing already dead individuals of P. acropodia. TA and pine litter microfungi engage in various direct and indirect interactions which are still poorly understood and deserve further investigation. Their elucidation will improve our knowledge on fundamental processes influencing coexistence of soil microflora and microfauna.