Voxelwise analysis
Dotaz
Zobrazit nápovědu
Robust voxelwise analysis using tract-based spatial statistics (TBSS) together with permutation statistical method is standardly used in analyzing diffusion tensor imaging (DTI) of brain. A similar analytical method could be useful when studying DTI of cervical spinal cord. Based on anatomical data of sixty-four healthy volunteers, white (WM) and gray matter (GM) masks were created and subsequently registered into DTI space. Using TBSS, two skeleton types were created (single line and dilated for WM as well as GM). From anatomical data, percentage rates of overlap were calculated for all skeletons in relation to WM and GM masks. Voxelwise analysis of fractional anisotropy values depending on age and sex was conducted. Correlation of fraction anisotropy values with age of subjects was also evaluated. The two WM skeleton types showed a high overlap rate with WM masks (~94%); GM skeletons showed lower rates (56% and 42%, respectively, for single line and dilated). WM and GM areas where fraction anisotropy values differ between sexes were identified (p < .05). Furthermore, using voxelwise analysis such WM voxels were identified where fraction anisotropy values differ depending on age (p < .05) and in these voxels linear dependence of fraction anisotropy and age (r = -0.57, p < .001) was confirmed by regression analysis. This dependence was not proven when using WM anatomical masks (r = -0.21, p = .10). The analytical approach presented shown to be useful for group analysis of DTI data for cervical spinal cord.
- MeSH
- algoritmy * MeSH
- anizotropie MeSH
- bílá hmota diagnostické zobrazování MeSH
- difuzní magnetická rezonance * MeSH
- dospělí MeSH
- krční mícha diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- počítačové zpracování obrazu metody MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), slowly expanding lesions were shown to be associated with worse disability and prognosis. Their timely detection from cross-sectional data at early disease stages could be clinically relevant to inform treatment planning. Here, we propose to use multiparametric, quantitative MRI to allow a better cross-sectional characterization of lesions with different longitudinal phenotypes. METHODS: We analysed T1 and T2 relaxometry maps from a longitudinal cohort of MS patients. Lesions were classified as enlarging, shrinking, new or stable based on their longitudinal volumetric change using a newly developed automated technique. Voxelwise deviations were computed as z-scores by comparing individual patient data to T1, T2 and T2/T1 normative values from healthy subjects. We studied the distribution of microstructural properties inside lesions and within perilesional tissue. RESULTS AND CONCLUSIONS: Stable lesions exhibited the highest T1 and T2 z-scores in lesion tissue, while the lowest values were observed for new lesions. Shrinking lesions presented the highest T1 z-scores in the first perilesional ring while enlarging lesions showed the highest T2 z-scores in the same region. Finally, a classification model was trained to predict the longitudinal lesion type based on microstructural metrics and feature importance was assessed. Z-scores estimated in lesion and perilesional tissue from T1, T2 and T2/T1 quantitative maps carry discriminative and complementary information to classify longitudinal lesion phenotypes, hence suggesting that multiparametric MRI approaches are essential for a better understanding of the pathophysiological mechanisms underlying disease activity in MS lesions.
- MeSH
- dospělí MeSH
- fenotyp * MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování patologie MeSH
- multiparametrická magnetická rezonance MeSH
- progrese nemoci MeSH
- průřezové studie MeSH
- roztroušená skleróza * diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: An extension of single- and multi-channel blind deconvolution is presented to improve the estimation of the arterial input function (AIF) in quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). METHODS: The Lucy-Richardson expectation-maximization algorithm is used to obtain estimates of the AIF and the tissue residue function (TRF). In the first part of the algorithm, nonparametric estimates of the AIF and TRF are obtained. In the second part, the decaying part of the AIF is approximated by three decaying exponential functions with the same delay, giving an almost noise free semi-parametric AIF. Simultaneously, the TRF is approximated using the adiabatic approximation of the Johnson-Wilson (aaJW) pharmacokinetic model. RESULTS: In simulations and tests on real data, use of this AIF gave perfusion values close to those obtained with the corresponding previously published nonparametric AIF, and are more noise robust. CONCLUSION: When used subsequently in voxelwise perfusion analysis, these semi-parametric AIFs should give more correct perfusion analysis maps less affected by recording noise than the corresponding nonparametric AIFs, and AIFs obtained from arteries. SIGNIFICANCE: This paper presents a method to increase the noise robustness in the estimation of the perfusion parameter values in DCE-MRI.
- MeSH
- algoritmy MeSH
- arterie patologie MeSH
- kontrastní látky chemie farmakokinetika MeSH
- magnetická rezonanční tomografie * MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- perfuze MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu * MeSH
- reprodukovatelnost výsledků MeSH
- vylepšení obrazu * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast-enhanced MRI (DCE-MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasma flow and the permeability-surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. THEORY AND METHODS: Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. RESULTS: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data show improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. CONCLUSION: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.
- MeSH
- algoritmy MeSH
- fantomy radiodiagnostické MeSH
- glioblastom diagnostické zobrazování MeSH
- kontrastní látky farmakologie MeSH
- krysa rodu rattus MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování MeSH
- nádory mozku diagnostické zobrazování MeSH
- perfuze MeSH
- permeabilita MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu MeSH
- poměr signál - šum MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH