Natural ferric ochres that precipitate in streambeds at abandoned mining sites are natural scavengers of various metals and metalloids. Thus, their chemical and structural modification via microbial activity should be considered in evaluation of the risks emerging from probable spread of contamination at mining sites. Our results highlight the role of various aspergilli strains in this process via production of acidic metabolites that affect mobility and bioavailability of coprecipitated contaminants. The Mössbauer analysis revealed subtle structural changes of iron in ochres, while the elemental analysis of non-dissolved residues of ochres that were exposed to filamentous fungi suggest coinciding bioextraction of arsenic and antimony with extensive iron mobilisation. However, the zinc bioextraction by filamentous fungi is less likely dependent on iron leaching from ferric ochres. The strain specific bioextraction efficiency and subsequent bioaccumulation of mobilised metals resulted in distinct tolerance responses among the studied soil fungal strains. However, regardless the burden of bioextracted metal(loid)s on its activity, the Aspergillus niger strain has shown remarkable capability to decrease pH of its environment and, thus, bioextract significant and environmentally relevant amounts of potentially toxic elements from the natural ochres.
Increasing amounts of impurities (especially As) in Cu ores have aggravated the problem of flue dust generation in recent years. As an example from a smelter processing As-rich Cu ores, we characterized a flue dust particularly rich in As (>50 wt%) to understand its mineralogy and pH-dependent leaching behavior, with special emphasis on binding, release and solubility controls of inorganic contaminants (As, Bi, Cd, Cu, Pb, Sb, Zn). Whereas arsenolite (As2O3) was the major host for As and Sb, other contaminants were bound in sulfides, arsenates, alloys and slag-like particles. The EU regulatory leaching test (EN 12457-2) indicated that leached As, Cd, Sb and Zn significantly exceeded the limit values for landfills accepting hazardous waste. The pH-dependent leaching test (CEN/TS 14997) revealed that As, Sb and Pb exhibited the greatest leaching at pH 11-12, whereas Cd, Cu and Zn were leached most under acidic condition (pH 3) and Bi leaching was pH-independent. Mineralogical investigation of leached residue coupled with geochemical modeling confirmed that newly formed Ca, Pb and Ca-Pb arsenates (mimetite, Pb5(AsO4)3Cl) partly control the release of As and other contaminants under circumneutral and alkaline conditions and will be of key importance for the fate of smelter-derived contamination in soils or when stabilization technology is employed.
The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment.
- MeSH
- Arsenates MeSH
- European Union MeSH
- Mining MeSH
- Metallurgy methods MeSH
- Metals MeSH
- Environmental Pollutants analysis MeSH
- Copper * MeSH
- Hazardous Waste legislation & jurisprudence MeSH
- Waste Products analysis MeSH
- Environment * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Namibia MeSH
Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO4·2H2O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals.
- MeSH
- Arsenic analysis chemistry MeSH
- Time Factors MeSH
- Cadmium analysis chemistry MeSH
- Hydrogen-Ion Concentration MeSH
- Soil Pollutants chemistry MeSH
- Minerals chemistry MeSH
- Nanostructures chemistry MeSH
- Lead analysis chemistry MeSH
- Aluminum Oxide chemistry MeSH
- Oxides chemistry MeSH
- Environmental Restoration and Remediation MeSH
- Aluminum Silicates MeSH
- Manganese Compounds chemistry MeSH
- Metals, Heavy analysis chemistry MeSH
- Iron chemistry MeSH
- Zinc analysis chemistry MeSH
- Environmental Pollution MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Powdered samples of new and old gasoline catalysts (Pt, Pd, Rh) and new and old diesel (Pt) catalysts were subjected to a pH-static leaching procedure (pH 2-9) coupled with thermodynamic modeling using PHREEQC-3 to verify the release and mobility of PGEs (platinum group elements). PGEs were released under acidic conditions, mostly exhibiting L-shaped leaching patterns: diesel old: 5.47, 0.005, 0.02; diesel new: 68.5, 0.23, 0.11; gasoline old: 0.1, 11.8, 4.79; gasoline new 2.6, 25.2, 35.9 in mg kg(-1) for Pt, Pd and Rh, respectively. Only the new diesel catalyst had a strikingly different leaching pattern with elevated concentrations at pH 4, probably influenced by the dissolution of the catalyst carrier and washcoat. The pH-static experiment coupled with thermodynamic modeling was found to be an effective instrument for understanding the leaching behavior of PGEs under various environmental conditions, and indicated that charged Pt and Rh species may be adsorbed on the negatively charged surface of kaolinite or Mn oxides in the soil system, whereas uncharged Pd and Rh species may remain mobile in soil solutions.
Various low-molecular-weight organic acids (LMWOAs) play an important role in the mobilisation of contaminants and their subsequent uptake by plants. Nano-maghemite (NM) and an amorphous Mn oxide (AMO) were investigated for their stabilisation potential under simulated rhizosphere conditions in terms of their use during chemical stabilisation and aided phytostabilisation of metal(loid)s in contaminated soils. In order to understand the reactivity of these potential sorbents of contaminants in soils and subsequent mobility of metal(loid)s, a set of time-dependent batch leaching experiments was performed using a mix of acetic, lactic, citric, malic and formic acids simulating root exudates. Despite being relatively unstable under given conditions, the AMO proved to be an efficient amendment for rapid stabilisation of both metals and As compared to NM. Generally, low pH (∼ 4) and the presence of citrate complexes resulted in higher mobility of metals in the non- and NM-amended soil. In contrast, the presence of AMO in the soil accelerated the neutralisation reactions related to pH increase and (co-) precipitation of secondary Fe/Mn/Al oxyhydroxides. Mineralogical transformations of the AMO showed to be crucial for contaminant immobilisation.
- MeSH
- Arsenic chemistry MeSH
- Metal Nanoparticles chemistry MeSH
- Metals chemistry MeSH
- Carboxylic Acids chemistry MeSH
- Soil Pollutants chemistry MeSH
- Molecular Weight MeSH
- Oxides chemistry MeSH
- Manganese Compounds chemistry MeSH
- Ferric Compounds chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils.
- MeSH
- Arsenic chemistry MeSH
- Metallurgy MeSH
- Hydrogen-Ion Concentration MeSH
- Soil Pollutants chemistry MeSH
- Waste Management MeSH
- Oxides chemistry MeSH
- Industrial Waste MeSH
- Environmental Restoration and Remediation MeSH
- Manganese Compounds chemistry MeSH
- Metals, Heavy chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Soils in the vicinity of nonferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions. We used a technique with double polyamide experimental bags (1-μm mesh) to study the in situ transformation of fly ash (FA) from a secondary Pb smelter in acidic soil profiles. Between 62 and 66% of the FA dissolved after one year's exposure in the soils, leading to complete dissolution of primary caracolite (Na(3)Pb(2)(SO(4))(3)Cl) and KPb(2)Cl(5), with formation of secondary anglesite (PbSO(4)), minor PbSO(3), and trace carbonates. Release of Pb was pH-dependent, whereas not for Cd and Zn. Significant amounts of metals (mainly Cd and Zn) partitioned into labile soil fractions. The field data agreed with laboratory pH-static leaching tests performed on FA, which was washed before the experiment to remove soluble salts. This indicates that appropriate laboratory leaching can accurately predict FA behavior in real-life scenarios (e.g., exposure in soil).