Ectomycorrhizal and saprobic macrofungi growing in the wild were collected from non-auriferous and unpolluted areas and analyzed for gold. Gold was determined using long-term instrumental neutron activation analysis (INAA). In total, 154 samples, including 67 species of ectomycorrhizal fungi and 22 species of terrestrial saprobes, were examined. Gold contents of the both groups were mostly less than 20 ng g(-1) of D.W. The highest concentrations (expressed in D.W.) were found in the ectomycorrhizal species Amanita strobiliformis (136 ng g(-1)), Russula claroflava (148 ng g(-1)), Cantharellus lutescens (156 and 210 ng g(-1)), and Boletus edulis (235 ng g(-1)). Among the saprobic fungi, the highest values were found in Langermannia gigantea (160 ng g(-1)) and Morchella esculenta (189 ng g(-1)). Species of Agaricus commonly had relatively high gold values, 10s of ng g(-1). The gold content of macrofungal fruit bodies was considerably higher than that of vascular plants, and parallels concentrations found in plants growing in auriferous areas.
Widespread morbidity and mortality of Juglans nigra has occurred in the western USA over the past decade. Tree mortality is the result of aggressive feeding by the walnut twig beetle (Pityophthorus juglandis) and subsequent canker development around beetle galleries caused by a filamentous ascomycete in genus Geosmithia (Ascomycota: Hypocreales). Thirty-seven Geosmithia strains collected from J. californica, J. hindsii, J. major and J. nigra in seven USA states (AZ, CA, CO, ID, OR, UT, WA) were compared with morphological and molecular methods (ITS rDNA sequences). Strains had common characteristics including yellowish conidia en masse, growth at 37 C and absence of growth on Czapek-Dox agar and belonged to a single species described here as G. morbida. Whereas Geosmithia are common saprobes associated with bark beetles attacking hardwoods and conifers worldwide, G. morbida is the first species documented as a plant pathogen.
- MeSH
- Coleoptera microbiology physiology MeSH
- DNA, Fungal genetics MeSH
- Phylogeny MeSH
- Hypocreales classification genetics isolation & purification physiology MeSH
- Juglans microbiology parasitology MeSH
- DNA, Ribosomal Spacer genetics MeSH
- Molecular Sequence Data MeSH
- Plant Diseases microbiology MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geographicals
- United States MeSH
Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.
A new species of the family Alloionematidae was isolated from a rotten winged gourd at White Crane Garden, San Francisco, USA, sampled by Christopher Nelson in November 2010, and a live culture is deposited in Félix Lab Strain Database (http://www.justbio.com/worms/index.php), IBENS, Paris, France. Specimens from the culture have been examined. Both morphologically and molecularly, the nematode described herein as Alloionema californicum n. sp. differs from the other alloionematid species, A. appendiculatum and Neoalloionema tricaudatum. It is characterised by having a narrow stoma, 2.5-3.5 or 4 times longer than broad in adults or dauer juveniles respectively. Lateral fields are not present in adults but occur as one prominent ridge in dauers. Males have no bursa, six pairs of genital papillae and one single papilla. Dauers have large apparent phasmids in the middle of the tail. The ecology of the newly described species is unknown but probably it is a saprobic bacteriophagous nematode preferring rotting organic material.
- MeSH
- Cucurbita parasitology MeSH
- Phylogeny MeSH
- Plant Diseases parasitology MeSH
- Rhabditida classification genetics isolation & purification ultrastructure MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- United States MeSH
Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg(-1) (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg(-1) (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess.
Phasmarhabditis bonaquaense n. sp. is described and illustrated from the body of Malacolimax tenellus, from the locality of České Švýcary near the village of Dobrá Voda, the Czech Republic. Females are characterized by a body length of 2349 (1878-2626) μm and a cupola shaped tail with a long hyaline hair-like tail tip. Extremely prominent papilla-like phasmids present. Males 1829 (1414-2121) μm long. Peloderan bursa with nine pairs of rays (papillae), 1/1/1/2/1/3. One non-paired apparent papilla-like structure located near the ventral appendage anterior to the cloaca. Prominent papilla-like phasmids located close to the tail tip. Small subunit (18S), ITS, and D2-D3 expansion segments of the large subunit of ribosomal DNA were used to analyze the phylogenetic relationships of sequenced species in the genus Phasmarhabditis and other closely related species. Phasmarhabditis bonaquaense n. sp. varied from other related nematodes both in morphological characterizations and phylogenetic analysis. The life cycle of the newly described species is not well known but it is probably a facultative, mollusc-parasitic nematode able to survive permanently in the saprobic phase on decaying organic matter.
- MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Gastropoda parasitology MeSH
- Rhabditoidea anatomy & histology classification genetics MeSH
- DNA, Ribosomal genetics MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
The nuclear ribosomal DNA (nuc-rDNA) is widely used for the identification and phylogenetic reconstruction of Agaricomycetes. However, nuc-rDNA-based phylogenies may sometimes be in conflict with phylogenetic relationships derived from protein coding genes. In this study, the taxonomic position of the basidiomycetous mycobiont that forms the recently discovered sheathed ericoid mycorrhiza was investigated, because its nuc-rDNA is highly dissimilar to any other available fungal sequences in terms of nucleotide composition and length, and its nuc-rDNA-based phylogeny is inconclusive and significantly disagrees with protein coding sequences and morphological data. In the present work, this mycobiont was identified as Kurtia argillacea (= Hyphoderma argillaceum) residing in the order Hymenochaetales (Basidiomycota). Bioinformatic screening of the Kurtia ribosomal DNA sequence indicates that it represents a gene with a non-standard substitution rate or nucleotide composition heterogeneity rather than a deep paralogue or a pseudogene. Such a phenomenon probably also occurs in other lineages of the Fungi and should be taken into consideration when nuc-rDNA (especially that with unusual nucleotide composition) is used as a sole marker for phylogenetic reconstructions. Kurtia argillacea so far represents the only confirmed non-sebacinoid ericoid mycorrhizal fungus in the Basidiomycota and its intriguing placement among mostly saprobic and parasitic Hymenochaetales begs further investigation of its eco-physiology.
- MeSH
- Basidiomycota classification genetics MeSH
- Peptide Elongation Factor 1 genetics MeSH
- Phylogeny * MeSH
- GC Rich Sequence MeSH
- DNA, Ribosomal Spacer genetics MeSH
- DNA, Mitochondrial genetics MeSH
- Mycorrhizae classification genetics MeSH
- DNA, Ribosomal genetics MeSH
- Base Composition MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH