The affiliation number 1, "Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic" changed its zip code to 612 00 [...].
- Publikační typ
- tisková chyba MeSH
METTL16 methyltransferase is responsible for the methylation of N6-adenosine (m6A) in several RNAs. In mouse cells, we showed that the nuclear distribution of METTL16 is cell cycle-specific. In the G1/S phases, METTL16 accumulates to the nucleolus, while in the G2 phase, the level of METTL16 increases in the nucleoplasm. In metaphase and anaphase, there is a very low pool of the METTL16 protein, but in telophase, residual METTL16 appears to be associated with the newly formed nuclear lamina. In A-type lamin-depleted cells, we observed a reduction of METTL16 when compared with the wild-type counterpart. However, METTL16 does not interact with A-type and B-type lamins, but interacts with Lamin B Receptor (LBR) and Lap2α. Additionally, Lap2α depletion caused METTL16 downregulation in the nuclear pool. Furthermore, METTL16 interacted with DDB2, a key protein of the nucleotide excision repair (NER), and also with nucleolar proteins, including TCOF, NOLC1, and UBF1/2, but not fibrillarin. From this view, the METTL16 protein may also regulate the transcription of ribosomal genes because we observed that the high level of m6A in 18S rRNA appeared in cells with upregulated METTL16.
- Publikační typ
- časopisecké články MeSH
G-quadruplexes (G4s) are four-stranded helical structures that regulate several nuclear processes, including gene expression and telomere maintenance. We observed that G4s are located in GC-rich (euchromatin) regions and outside the fibrillarin-positive compartment of nucleoli. Genomic regions around G4s were preferentially H3K9 acetylated and H3K9 dimethylated, but H3K9me3 rarely decorated G4 structures. We additionally observed the variability in the number of G4s in selected human and mouse cell lines. We found the highest number of G4s in human embryonic stem cells. We observed the highest degree of colocalization between G4s and transcription factories, positive on the phosphorylated form of RNA polymerase II (RNAP II). Similarly, a high colocalization rate was between G4s and nuclear speckles, enriched in pre-mRNA splicing factor SC-35. PML bodies, the replication protein SMD1, and Cajal bodies colocalized with G4s to a lesser extent. Thus, G4 structures seem to appear mainly in nuclear compartments transcribed via RNAP II, and pre-mRNA is spliced via the SC-35 protein. However, α-amanitin, an inhibitor of RNAP II, did not affect colocalization between G4s and transcription factories as well as G4s and SC-35-positive domains. In addition, irradiation by γ-rays did not change a mutual link between G4s and DNA repair proteins (G4s/γH2AX, G4s/53BP1, and G4s/MDC1), accumulated into DNA damage foci. Described characteristics of G4s seem to be the manifestation of pronounced G4s stability that is likely maintained not only via a high-order organization of these structures but also by a specific histone signature, including H3K9me2, responsible for chromatin compaction.
- MeSH
- acetylace MeSH
- buněčná inkluze metabolismus MeSH
- buněčné jadérko metabolismus MeSH
- buněčné jádro metabolismus MeSH
- buněčné linie MeSH
- chromatin metabolismus MeSH
- DNA metabolismus MeSH
- epigeneze genetická MeSH
- G-kvadruplexy * MeSH
- genetická transkripce * MeSH
- histony metabolismus MeSH
- lidé MeSH
- metylace MeSH
- myši MeSH
- oprava DNA MeSH
- zastoupení bazí genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The DNA damage response is mediated by both DNA repair proteins and epigenetic markers. Here, we observe that N6-methyladenosine (m6A), a mark of the epitranscriptome, was common in RNAs accumulated at UV-damaged chromatin; however, inhibitors of RNA polymerases I and II did not affect the m6A RNA level at the irradiated genomic regions. After genome injury, m6A RNAs either diffused to the damaged chromatin or appeared at the lesions enzymatically. DNA damage did not change the levels of METTL3 and METTL14 methyltransferases. In a subset of irradiated cells, only the METTL16 enzyme, responsible for m6A in non-coding RNAs as well as for splicing regulation, was recruited to microirradiated sites. Importantly, the levels of the studied splicing factors were not changed by UVA light. Overall, if the appearance of m6A RNAs at DNA lesions is regulated enzymatically, this process must be mediated via the coregulatory function of METTL-like enzymes. This event is additionally accompanied by radiation-induced depletion of 2,2,7-methylguanosine (m3G/TMG) in RNA. Moreover, UV-irradiation also decreases the global cellular level of N1-methyladenosine (m1A) in RNAs. Based on these results, we prefer a model in which m6A RNAs rapidly respond to radiation-induced stress and diffuse to the damaged sites. The level of both (m1A) RNAs and m3G/TMG in RNAs is reduced as a consequence of DNA damage, recognized by the nucleotide excision repair mechanism.
- MeSH
- adenosin analogy a deriváty metabolismus MeSH
- chromatin metabolismus MeSH
- demetylace DNA účinky záření MeSH
- fyziologický stres účinky záření MeSH
- guanosin analogy a deriváty metabolismus MeSH
- metylace DNA genetika účinky záření MeSH
- metylace účinky záření MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nekódující RNA metabolismus MeSH
- nestabilita genomu účinky záření MeSH
- poškození DNA MeSH
- RNA metabolismus MeSH
- ultrafialové záření * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Repair of ribosomal DNA (rDNA) is a very important nuclear process due to the most active transcription of ribosomal genes. Proper repair of rDNA is required for physiological biogenesis of ribosomes. Here, we analyzed the epigenetics of the DNA damage response in a nucleolar compartment, thus in the ribosomal genes studied in nonirradiated and UVA-irradiated mouse embryonic fibroblasts (MEFs). We found that the promoter of ribosomal genes is not abundant on H4K20me2, but it is densely occupied by H4K20me3. Ribosomal genes, regulated via UBF1/2 proteins, were characterized by an interaction between UBF1/2 and H4K20me2/me3. This interaction was strengthened by UVA irradiation that additionally causes a focal accumulation of H4K20me3 in the nucleolus. No interaction has been found between UBF1/2 and H3K9me3. Interestingly, UVA irradiation decreases the levels of H3K9me3 and H4K20me3 at 28S rDNA. Altogether, the UVA light affects the epigenetic status of ribosomal genes at 28S rDNA and strengthens an interaction between UBF1/2 proteins and H4K20me2/me3.
- MeSH
- buněčné jadérko metabolismus MeSH
- buněčné jádro metabolismus MeSH
- chromatinová imunoprecipitace MeSH
- DNA vazebné proteiny MeSH
- epigeneze genetická účinky záření MeSH
- fluorescenční protilátková technika MeSH
- histony metabolismus MeSH
- metylace MeSH
- myši MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese účinky záření MeSH
- ribozomální DNA genetika MeSH
- transkripční iniciační komplex Pol1 - proteiny metabolismus MeSH
- ultrafialové záření * MeSH
- vazba proteinů MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype.
- MeSH
- acetylace MeSH
- antagonisté kanabinoidních receptorů farmakologie MeSH
- antipsychotika farmakologie MeSH
- časové faktory MeSH
- epigeneze genetická MeSH
- gestační stáří MeSH
- histondeacetylasa 1 antagonisté a inhibitory genetika metabolismus MeSH
- histondeacetylasy genetika metabolismus MeSH
- histony metabolismus MeSH
- inhibitory histondeacetylas farmakologie MeSH
- methylazoxymethanolacetát MeSH
- modely nemocí na zvířatech MeSH
- molekuly buněčné adheze nervové genetika metabolismus MeSH
- mozek účinky léků embryologie enzymologie patologie MeSH
- myši inbrední C57BL MeSH
- neurogeneze * účinky léků MeSH
- neurony účinky léků enzymologie patologie MeSH
- posttranslační úpravy proteinů MeSH
- potkani Sprague-Dawley MeSH
- receptor kanabinoidní CB1 antagonisté a inhibitory metabolismus MeSH
- schizofrenie chemicky indukované farmakoterapie enzymologie genetika MeSH
- signální transdukce MeSH
- transkripční faktory SOXB1 genetika metabolismus MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.
- MeSH
- alkalická fosfatasa genetika metabolismus MeSH
- amifostin farmakokinetika farmakologie MeSH
- dvouřetězcové zlomy DNA účinky léků MeSH
- fibroblasty účinky léků účinky záření MeSH
- fluorescenční mikroskopie metody MeSH
- histony genetika metabolismus MeSH
- intracelulární signální peptidy a proteiny genetika metabolismus MeSH
- kometový test MeSH
- lidé MeSH
- merkaptoethylaminy farmakokinetika MeSH
- MFC-7 buňky účinky léků účinky záření MeSH
- oprava DNA účinky léků MeSH
- poškození DNA účinky léků MeSH
- radioprotektivní látky farmakologie MeSH
- záření gama MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Adenosine A3 receptor knockout (A3AR KO) mice and their wild-type (WT) counterparts were compared from the point of view of their abilities to survive exposures to lethal doses of γ-radiation belonging to the range of radiation doses inducing the bone marrow acute radiation syndrome. Parameters of cumulative 30-day survival (experiment using a midlethal radiation dose) or cumulative 11-day survival (experiment using an absolutely lethal radiation dose), and of mean survival time were evaluated. The values of A3AR KO mice always reflected their higher survival in comparison with WT ones, the P values being above the limit for statistical significance after the midlethal radiation dose and standing for statistical significance after the absolutely lethal radiation dose. This finding was considered surprising, taking into account the previously obtained findings on defects in numbers and functional properties of peripheral blood cells in A3AR KO mice. Therefore, previous hematological analyses of A3AR KO mice were supplemented in the present studies with determination of serum levels of the granulocyte colony-stimulating factor, erythropoietin, and thrombopoietin. Though distinct differences in these parameters were observed between A3AR KO and WT mice, none of them could explain the relatively high postirradiation survival of A3AR KO mice. Further studies on these mice comprising also those on other than hemopoietic tissues and organs can help to clarify their relative radioresistance.
The purpose of the study was to describe and compare normal and 5-fluorouracil (5-FU)-suppressed hematopoiesis in adenosine A(3) receptor knock-out (A(3)AR KO) mice and their wild-type (WT) counterparts. To meet the purpose, a complex hematological analysis comprising nineteen peripheral blood and bone marrow parameters was performed in the mice. Defects previously observed in the peripheral blood erythrocyte and thrombocyte parameters of the A(3)AR KO mice were confirmed. Compartments of the bone marrow progenitor cells for granulocytes/macrophages and erythrocytes were enhanced in the control, as well as in the 5-FU-administered A(3)AR KO mice. 5-FU-induced hematopoietic suppression, evaluated on day 2 after the administration of the cytotoxic drug, was found to be significantly deeper in the A(3)AR KO mice compared with their WT counterparts, as measured at the level of the bone marrow progenitor cells. The rate of regeneration, as assessed between days 2 and 7 after 5-FU administration, was observed in the population of the granulocyte/macrophage progenitor cells to be higher in the A(3)AR KO mice in comparison with the WT ones. The increased depth of 5-FU-induced suppression in the compartments of the hematopoietic progenitor cells in the A(3)AR KO mice represents probably a hitherto undescribed further consequence of the lack of adenosine A(3) receptors and indicates its synergism with the pharmacologically induced cytotoxic action of 5-FU.
- MeSH
- biochemická analýza krve MeSH
- buňky kostní dřeně účinky léků MeSH
- fluoruracil farmakologie MeSH
- hematopoéza účinky léků MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- počet erytrocytů MeSH
- počet leukocytů MeSH
- protinádorové antimetabolity farmakologie MeSH
- receptor adenosinový A3 genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.
- MeSH
- hematopoetické kmenové buňky metabolismus MeSH
- hematopoéza fyziologie MeSH
- leukocyty mononukleární metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- receptor adenosinový A3 nedostatek MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH