DNA double-strand breaks (DSBs), such as those produced by radiation and radiomimetics, are amongst the most toxic forms of cellular damage, in part because they involve extensive oxidative modifications at the break termini. Prior to completion of DSB repair, the chemically modified termini must be removed. Various DNA processing enzymes have been implicated in the processing of these dirty ends, but molecular knowledge of this process is limited. Here, we demonstrate a role for the metallo-β-lactamase fold 5'-3' exonuclease SNM1A in this vital process. Cells disrupted for SNM1A manifest increased sensitivity to radiation and radiomimetic agents and show defects in DSB damage repair. SNM1A is recruited and is retained at the sites of DSB damage via the concerted action of its three highly conserved PBZ, PIP box and UBZ interaction domains, which mediate interactions with poly-ADP-ribose chains, PCNA and the ubiquitinated form of PCNA, respectively. SNM1A can resect DNA containing oxidative lesions induced by radiation damage at break termini. The combined results reveal a crucial role for SNM1A to digest chemically modified DNA during the repair of DSBs and imply that the catalytic domain of SNM1A is an attractive target for potentiation of radiotherapy.
- MeSH
- DNA metabolismus genetika MeSH
- dvouřetězcové zlomy DNA * účinky záření MeSH
- enzymy opravy DNA * metabolismus genetika MeSH
- exodeoxyribonukleasy * metabolismus genetika MeSH
- lidé MeSH
- oprava DNA * MeSH
- proliferační antigen buněčného jádra metabolismus genetika MeSH
- proteiny buněčného cyklu MeSH
- ubikvitinace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Meiotic recombination is of central importance for the proper segregation of homologous chromosomes, but also for creating genetic diversity. It is initiated by the formation of double-strand breaks (DSBs) in DNA catalysed by evolutionarily conserved Spo11, together with additional protein partners. Difficulties in purifying the Spo11 protein have limited the characterization of its biochemical properties and of its interactions with other DSB proteins. In this study, we have purified fragments of Spo11 and show for the first time that Spo11 can physically interact with Mre11 and modulates its DNA binding, bridging, and nuclease activities. The interaction of Mre11 with Spo11 requires its far C-terminal region, which is in line with the severe meiotic phenotypes of various mre11 mutations located at the C-terminus. Moreover, calibrated ChIP for Mre11 shows that Spo11 promotes Mre11 recruitment to chromatin, independent of DSB formation. A mutant deficient in Spo11 interaction severely reduces the association of Mre11 with meiotic chromatin. Consistent with the reduction of Mre11 foci in this mutant, it strongly impedes DSB formation, leading to spore death. Our data provide evidence that physical interaction between Spo11 and Mre11, together with end-bridging, promote normal recruitment of Mre11 to hotspots and DSB formation.
- MeSH
- chromatin * metabolismus MeSH
- DNA vazebné proteiny metabolismus genetika MeSH
- dvouřetězcové zlomy DNA * MeSH
- endodeoxyribonukleasy * metabolismus genetika MeSH
- exodeoxyribonukleasy metabolismus genetika MeSH
- meióza * genetika MeSH
- mutace MeSH
- Saccharomyces cerevisiae - proteiny * metabolismus genetika MeSH
- Saccharomyces cerevisiae cytologie genetika metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.
- MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- fosfoproteiny genetika metabolismus MeSH
- lidé MeSH
- mutace * MeSH
- myši MeSH
- rekombinasa Rad51 biosyntéza genetika metabolismus MeSH
- replikace DNA * MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51(T131P) mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.
- MeSH
- časové faktory MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA-polymerasa I metabolismus MeSH
- DNA-polymerasa III metabolismus MeSH
- DNA biosyntéza genetika MeSH
- endodeoxyribonukleasy genetika metabolismus MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- nestabilita genomu MeSH
- protein BRCA2 genetika metabolismus MeSH
- proteiny Xenopus genetika metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikace DNA * MeSH
- replikační počátek MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Xenopus laevis genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The approach for the detection of replicational activity in cells using 5-bromo-2'-deoxyuridine, a low concentration of hydrochloric acid and exonuclease III is presented in the study. The described method was optimised with the aim to provide a fast and robust tool for the detection of DNA synthesis with minimal impact on the cellular structures using image and flow cytometry. The approach is based on the introduction of breaks into the DNA by the low concentration of hydrochloric acid followed by the subsequent enzymatic extension of these breaks using exonuclease III. Our data showed that the method has only a minimal effect on the tested protein localisations and is applicable both for formaldehyde- and ethanol-fixed cells. The approach partially also preserves the fluorescence of the fluorescent proteins in the HeLa cells expressing Fluorescent Ubiquitin Cell Cycle Indicator. In the case of the short labelling pulses that disabled the use of 5-ethynyl-2'-deoxyuridine because of the low specific signal, the described method provided a bright signal enabling reliable recognition of replicating cells. The optimized protocol was also successfully tested for the detection of trifluridine, the nucleoside used as an antiviral drug and in combination with tipiracil also for the treatment of some types of cancer.
- MeSH
- bromodeoxyuridin metabolismus MeSH
- buněčný cyklus * MeSH
- buňky A549 MeSH
- exodeoxyribonukleasy metabolismus MeSH
- fluorescenční mikroskopie MeSH
- HeLa buňky MeSH
- kyselina chlorovodíková farmakologie MeSH
- lidé MeSH
- průtoková cytometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The CST (Cdc13/CTC1-STN1-TEN1) complex was proposed to have evolved kingdom specific roles in telomere capping and replication. To shed light on its evolutionary conserved function, we examined the effect of STN1 dysfunction on telomere structure in plants. STN1 inactivation in Arabidopsis leads to a progressive loss of telomeric DNA and the onset of telomeric defects depends on the initial telomere size. While EXO1 aggravates defects associated with STN1 dysfunction, it does not contribute to the formation of long G-overhangs. Instead, these G-overhangs arise, at least partially, from telomerase-mediated telomere extension indicating a deficiency in C-strand fill-in synthesis. Analysis of hypomorphic DNA polymerase α mutants revealed that the impaired function of a general replication factor mimics the telomeric defects associated with CST dysfunction. Furthermore, we show that STN1-deficiency hinders re-replication of heterochromatic regions to a similar extent as polymerase α mutations. This comparative analysis of stn1 and pol α mutants suggests that STN1 plays a genome-wide role in DNA replication and that chromosome-end deprotection in stn1 mutants may represent a manifestation of aberrant replication through telomeres.
- MeSH
- Arabidopsis genetika metabolismus MeSH
- chromozomální proteiny, nehistonové genetika metabolismus MeSH
- DNA-polymerasa I genetika metabolismus MeSH
- exodeoxyribonukleasy metabolismus MeSH
- genom rostlinný MeSH
- heterochromatin genetika metabolismus MeSH
- mutace MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- replikace DNA MeSH
- telomerasa genetika metabolismus MeSH
- telomery * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The 5'-3' resection of DNA ends is a prerequisite for the repair of DNA double strand breaks by homologous recombination, microhomology-mediated end joining, and single strand annealing. Recent studies in yeast have shown that, following initial DNA end processing by the Mre11-Rad50-Xrs2 complex and Sae2, the extension of resection tracts is mediated either by exonuclease 1 or by combined activities of the RecQ family DNA helicase Sgs1 and the helicase/endonuclease Dna2. Although human DNA2 has been shown to cooperate with the BLM helicase to catalyze the resection of DNA ends, it remains a matter of debate whether another human RecQ helicase, WRN, can substitute for BLM in DNA2-catalyzed resection. Here we present evidence that WRN and BLM act epistatically with DNA2 to promote the long-range resection of double strand break ends in human cells. Our biochemical experiments show that WRN and DNA2 interact physically and coordinate their enzymatic activities to mediate 5'-3' DNA end resection in a reaction dependent on RPA. In addition, we present in vitro and in vivo data suggesting that BLM promotes DNA end resection as part of the BLM-TOPOIIIα-RMI1-RMI2 complex. Our study provides new mechanistic insights into the process of DNA end resection in mammalian cells.
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- DNA-helikasy genetika metabolismus MeSH
- DNA genetika metabolismus MeSH
- dvouřetězcové zlomy DNA * MeSH
- enzymy opravy DNA genetika metabolismus MeSH
- exodeoxyribonukleasy genetika metabolismus MeSH
- genetická epistáze fyziologie MeSH
- HEK293 buňky MeSH
- helikasy RecQ genetika metabolismus MeSH
- lidé MeSH
- multienzymové komplexy genetika metabolismus MeSH
- ubikvitin aktivující enzymy genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The budding yeast Srs2 protein possesses 3' to 5' DNA helicase activity and channels untimely recombination to post-replication repair by removing Rad51 from ssDNA. However, it also promotes recombination via a synthesis-dependent strand-annealing pathway (SDSA). Furthermore, at the replication fork, Srs2 is required for fork progression and prevents the instability of trinucleotide repeats. To better understand the multiple roles of the Srs2 helicase during these processes, we analysed the ability of Srs2 to bind and unwind various DNA substrates that mimic structures present during DNA replication and recombination. While leading or lagging strands were efficiently unwound, the presence of ssDNA binding protein RPA presented an obstacle for Srs2 translocation. We also tested the preferred directionality of unwinding of various substrates and studied the effect of Rad51 and Mre11 proteins on Srs2 helicase activity. These biochemical results help us understand the possible role of Srs2 in the processing of stalled or blocked replication forks as a part of post-replication repair as well as homologous recombination (HR).
- MeSH
- delece genu MeSH
- DNA-helikasy genetika metabolismus MeSH
- endodeoxyribonukleasy metabolismus MeSH
- exodeoxyribonukleasy metabolismus MeSH
- homologní rekombinace * MeSH
- jednovláknová DNA chemie metabolismus MeSH
- křížová struktura DNA chemie metabolismus MeSH
- rekombinasa Rad51 metabolismus MeSH
- replikace DNA * MeSH
- replikační protein A metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper presents a new approach to electrochemical sensing of DNA damage, using osmium DNA markers and voltammetric detection at the pyrolytic graphite electrode. The technique is based on enzymatic digestion of DNA with a DNA repair enzyme exonuclease III (exoIII), followed by single-strand (ss) selective DNA modification by a complex of osmium tetroxide with 2,2'-bipyridine. In double-stranded DNA possessing free 3'-ends, the exoIII creates ss regions that can accommodate the electroactive osmium marker. Intensity of the marker signal measured at the pyrolytic graphite electrode responded well to the extent of DNA damage. The technique was successfully applied for the detection of (1) single-strand breaks (ssb) introduced in plasmid DNA by deoxyribonuclease I, and (2) apurinic sites generated in chromosomal calf thymus DNA upon treatment with the alkylating agent dimethyl sulfate. The apurinic sites were converted into the ssb by DNA repair endonuclease activity of the exoIII enzyme. We show that the presented technique is capable of detection of one lesion per approximately 10(5) nucleotides in supercoiled plasmid DNA.
- MeSH
- alkylační látky chemie MeSH
- biologické markery chemie MeSH
- biosenzitivní techniky metody MeSH
- deoxyribonukleasa (pyrimidinový dimer) metabolismus MeSH
- elektrochemie MeSH
- elektrody MeSH
- enzymy opravy DNA analýza metabolismus MeSH
- estery kyseliny sírové chemie MeSH
- exodeoxyribonukleasy metabolismus MeSH
- financování organizované MeSH
- osmium chemie MeSH
- poškození DNA MeSH
- puriny metabolismus MeSH
- senzitivita a specificita MeSH
- substrátová specifita MeSH
- uhlík chemie MeSH