15119934 OR Cell adhesion on artificial materials for tissue engineering Dotaz Zobrazit nápovědu
This article reviews the development of artificial bone substitutes from their older single-phase forms to novel multi-phase composites, mimicking the composition and architecture of natural bone tissue. The new generation of bone implants should be bioactive, i.e. they should induce the desired cellular responses, leading to integration of the material into the natural tissue and stimulating self-healing processes. Therefore, the first part of the review explains the common principles of the cellmaterial interaction and summarizes the strategies how to improve the biocompatibility and bioactivity of the materials by modifying the physico-chemical properties of the material surface, such as surface chemistry, wettability, electrical charge, rigidity, microroughness and especially nanoroughness. The latter has been shown to stimulate preferentially the growth of osteoblasts in comparison with other competitive cell types, such as fibroblasts, which could prevent fibrous tissue formation upon implantation. The second more specialized part of the review deals with materials suitable for bone contact and substitution, particularly novel polymer-based composites reinforced with fibres or inorganic particles and containing bioactive components, such as crystals of hydroxyapatite or other calcium phosphates, synthetic ligands for cell adhesion receptors or growth factors. Moreover, if they are degradable, they can be gradually replaced with a regenerating tissue.
- MeSH
- biokompatibilní materiály MeSH
- financování organizované MeSH
- kostní náhrady chemie terapeutické užití MeSH
- lidé MeSH
- osteoblasty fyziologie MeSH
- osteogeneze MeSH
- osteointegrace MeSH
- povrchové vlastnosti MeSH
- protézy - design MeSH
- tkáňové inženýrství MeSH
- transplantace kostí přístrojové vybavení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- přehledy MeSH
The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and chemical properties of the material surface can be advantageously used for constructing patterned surfaces. Micropatterned surfaces enable regionally selective cell adhesion and directed growth, which can be utilized in tissue engineering, in constructing microarrays and in biosensorics. Nanopatterned surfaces are an effective tool for manipulating the type, number, spacing and distribution of ligands for cell adhesion receptors on the material surface. As a consequence, these surfaces are able to control the size, shape, distribution and maturity of focal adhesion plaques on cells, and thus cell adhesion, proliferation, differentiation and other cell functions.
- MeSH
- biokompatibilní materiály farmakologie MeSH
- fyziologie buňky účinky léků MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- myši MeSH
- nanotechnologie MeSH
- povrchové vlastnosti MeSH
- protézy a implantáty MeSH
- testování materiálů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The applications of gas plasma and plasma modified materials in the emerging fields of medicine such as dentistry, drug delivery, and tissue engineering. Plasma sterilization of both living and non-living objects is safe, fast and efficient; for example plasma sterilization of medical equipment quickly removes microorganisms with no damage to the tiny delicate parts of the equipment and in dentistry it offers a non-toxic, painless bacterial inactivation of tissues from a dental cavity. Devices that generate plasma inside the root canal of a tooth give better killing efficiency against bacteria without causing any harm to the surrounding tissues. Plasma modified materials fulfill the requirements for bioactivity in medicine; for example, the inclusion of antimicrobial agents (metal nano particles, antimicrobial peptides, enzymes, etc.) in plasma modified materials (polymeric, metallic, etc) alters them to produce superior antibacterial biomedical devices with a longer active life. Thin polymer films or coating on surfaces with different plasma processes improves the adherence, controlled loading and release of drug molecules. Surface functionalization by plasma treatment stimulates cell adhesion, cell growth and the spread of tissue development. Plasma applications are already contributing significantly to the changing face of medicine and future trends are discussed in this paper.
- Klíčová slova
- plasma, sterilization, dentistry, surface functionalization, drug delivery, tissue engineering,
- MeSH
- biokompatibilní materiály MeSH
- biomedicínské inženýrství metody přístrojové vybavení trendy MeSH
- chemické jevy MeSH
- financování organizované MeSH
- kovy terapeutické užití MeSH
- lidé MeSH
- nosiče léků MeSH
- plyny MeSH
- polymery terapeutické užití MeSH
- protézy a implantáty využití MeSH
- slitiny terapeutické užití MeSH
- sterilizace MeSH
- výzkumné techniky MeSH
- zaváděcí katétry využití MeSH
- zubní materiály terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Surface bioactivity has been under intensive study with reference to its use in medical implants. Our study is focused on coatings prepared from an electroactive material which can support bone cell adhesion. Until now, hydroxyapatite films have usually been utilized as a chemically-active surface agent. However, electrically-active films could set a new direction in hard tissue replacement. As a base for these films, it is necessary to prepare an intermediate film, which can serve as a suitable barrier against the possible diffusion of some allergens and toxic elements from the substrate. The intermediate film also improves the adaptation of the mechanical properties of the basic material to an electroactive film. The aim of our work was to select an implantable and biocompatible material for this intermediate film that is suitable for coating several widely-used materials, to check the possibility of preparing an electroactive film for use on a material of this type, and to characterize the structure and several mechanical properties of this intermediate film. TiNb was selected as the material for the intermediate film, because of its excellent chemical and mechanical properties. TiNb coatings were deposited by magnetron sputtering on various substrates, namely Ti, Ti6Al4V, stainless steel, and bulk TiNb (as standard), and important properties of the layers, e.g. surface morphology and surface roughness, crystalline structure, etc., were characterized by several methods (SEM, EBSD, X-ray diffraction, nanoindentation and roughness measurement). It was found that the structure and the mechanical properties of the TiNb layer depended significantly on the type of substrate. TiNb was then used as a substrate for depositing a ferroelectrically active material, e.g., BaTiO3, and the adhesion, viability and proliferation of human osteoblast-like Saos-2 cells on this system were studied. We found that the electroactive BaTiO3 film was not only non-cytotoxic (i.e. it did not affect the cell viability). It also enhanced the growth of Saos-2 cells in comparison with pure TiNb and with standard tissue culture polystyrene wells, and also in comparison with BaTiO3 films deposited on Ti, i.e. a material clinically used for implantation into the bone.
- MeSH
- adheziva MeSH
- difrakce rentgenového záření MeSH
- hydroxyapatit MeSH
- lidé MeSH
- osteoblasty MeSH
- povrchové vlastnosti MeSH
- protézy a implantáty MeSH
- slitiny chemie MeSH
- testování materiálů MeSH
- titan MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
- MeSH
- adsorpce MeSH
- aminokyselinové motivy MeSH
- azidy chemie MeSH
- biokompatibilní potahované materiály * MeSH
- biomimetické materiály * MeSH
- buněčná adheze MeSH
- buněčné dělení MeSH
- cévní endotel fyziologie MeSH
- cévní protézy * MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- imobilizované proteiny MeSH
- křemík MeSH
- krevní plazma MeSH
- krevní proteiny MeSH
- lidé MeSH
- oligopeptidy chemie MeSH
- polyethylentereftaláty chemie MeSH
- polymerizace * MeSH
- povrchové vlastnosti MeSH
- řízená tkáňová regenerace přístrojové vybavení MeSH
- sklo MeSH
- syntetická chemie okamžité shody MeSH
- testování materiálů MeSH
- trombóza prevence a kontrola MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Engineering artificial skin constructs is an ongoing challenge. An ideal material for hosting skin cells is still to be discovered. A promising candidate is low-cost cellulose, which is commonly fabricated in the form of a mesh and is applied as a wound dressing. Unfortunately, the structure and the topography of current cellulose meshes are not optimal for cell growth. To enhance the surface structure and the physicochemical properties of a commercially available mesh, we coated the mesh with wood-derived cellulose nanofibrils (CNFs). Three different types of mesh coatings are proposed in this study as a skin cell carrier: positively charged cationic cellulose nanofibrils (cCNFs), negatively charged anionic cellulose nanofibrils (aCNFs), and a combination of these two materials (c+aCNFs). These cell carriers were seeded with normal human dermal fibroblasts (NHDFs) or with human adipose-derived stem cells (ADSCs) to investigate cell adhesion, spreading, morphology, and proliferation. The negatively charged aCNF coating significantly improved the proliferation of both cell types. The positively charged cCNF coating significantly enhanced the adhesion of ADSCs only. The number of NHDFs was similar on the cCNF coatings and on the noncoated pristine cellulose mesh. However, the three-dimensional (3D) structure of the cCNF coating promoted cell survival. The c+aCNF construct proved to combine benefits from both types of CNFs, which means that the c+aCNF cell carrier is a promising candidate for further application in skin tissue engineering.
- MeSH
- celulosa * MeSH
- hydrogely MeSH
- kmenové buňky MeSH
- kůže * MeSH
- lidé MeSH
- tkáňové inženýrství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIM: The purpose of this study was to prepare a coladerm-beta glucan membrane (CBGM) and to evaluate its biocompatibility, cytotoxicity, antimicrobial activity, genotoxicity and mutagenicity. METHODS: The biocompatibility of the membrane was studied on the base of cell adhesion and colonization of human fibroblasts on the biomaterial surface by light microscopy. The MTT test and LDH level determination in the culture medium removed from the control and cells treated on the membrane, were used for viability and cytotoxic evaluations. Flow cytometry and gel electrophoresis were used for analysis of cell cycle and death. The antimicrobial activity of CBGM was tested using the qualitative dilution method. Ames bacteria gene mutation test and Comet assay were used for mutagenic and genotoxic studies. RESULTS: MTT and LDH tests confirmed that CBGM is a non-toxic biomaterial. Flow cytometry and gel electrophoresis demonstrated that the membrane did not affect the cell cycle and did not induce either necrotic or apoptotic cell death. CBGM exhibited antibacterial activity against G(-) bacteria E. sakazakii, S. marcescens, E. coli and agains G(+) sporogenic bacteria B. cereus. No antifungal activity was detected. The membrane did not induce mutagenicity in the bacterial reverse mutation test in Salmonella Typhimurium strains. Similarly, the comet assay showed that the tested fibroblast cells growing with/without the membrane did not show any statistically significant DNA damage. CONCLUSIONS: The CBGM has good biocompatibility, no cytotoxicity/genotoxicity/mutagenicity and it can be included as a potential scaffold for tissue engineering.
Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm(2) for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they enhanced the fluorescence of VE cadherin, KDR, and vonWillebrand factor. Some of these changes sustained up to 6 h of flow, as confirmed by immunofluorescence. Combined matrices Co/LM and Co/FN seem to be more suitable for EC seeding and retention under flow. Moreover, Co/FN matrix promoted slightly more favorable cellular phenotype than Co/LM under SS of 2-6 h.
- MeSH
- buněčná adheze účinky léků MeSH
- časové faktory MeSH
- endoteliální buňky účinky léků metabolismus MeSH
- extracelulární matrix - proteiny farmakologie MeSH
- fluorescenční protilátková technika MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mechanický stres * MeSH
- myši MeSH
- pevnost ve smyku * MeSH
- povrchová plasmonová rezonance MeSH
- proliferace buněk účinky léků MeSH
- regulace genové exprese účinky léků MeSH
- smáčivost MeSH
- stanovení celkové genové exprese MeSH
- vena saphena cytologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH