37335485 OR Chromosome Painting Using Chromosome-Specific BAC Clones Dotaz Zobrazit nápovědu
Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human-camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly.
- MeSH
- genetické markery * MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace metody MeSH
- lamy genetika MeSH
- mapování chromozomů metody MeSH
- pohlavní chromozomy genetika MeSH
- srovnávací genomová hybridizace MeSH
- umělé bakteriální chromozomy MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Five families are traditionally recognized within higher ruminants (Pecora): Bovidae, Moschidae, Cervidae, Giraffidae and Antilocapridae. The phylogenetic relationships of Antilocapridae and Giraffidae within Pecora are, however, uncertain. While numerous fusions (mostly Robertsonian) have accumulated in the giraffe's karyotype (Giraffa camelopardalis, Giraffidae, 2n = 30), that of the pronghorn (Antilocapra americana, Antilocapridae, 2n = 58) is very similar to the hypothesised pecoran ancestral state (2n = 58). We examined the chromosomal rearrangements of two species, the giraffe and pronghorn, using a combination of fluorescence in situ hybridization painting probes and BAC clones derived from cattle (Bos taurus, Bovidae). Our data place Moschus (Moschidae) closer to Bovidae than Cervidae. Although the alternative (i.e., Moschidae + Cervidae as sister groups) could not be discounted in recent sequence-based analyses, cytogenetics bolsters conclusions that the former is more likely. Additionally, DNA sequences were isolated from the centromeric regions of both species and compared. Analysis of cenDNA show that unlike the pronghorn, the centromeres of the giraffe are probably organized in a more complex fashion comprising different repetitive sequences specific to single chromosomal pairs or groups of chromosomes. The distribution of nucleolar organiser region (NOR) sites, often an effective phylogenetic marker, were also examined in the two species. In the giraffe, the position of NORs seems to be autapomorphic since similar localizations have not been found in other species within Pecora.
- MeSH
- centromera genetika MeSH
- chromozom X MeSH
- fylogeneze MeSH
- hybridizace in situ fluorescenční MeSH
- karyotyp MeSH
- malování chromozomů MeSH
- organizátor jadérka MeSH
- přežvýkavci klasifikace genetika MeSH
- pruhování chromozomů MeSH
- repetitivní sekvence nukleových kyselin MeSH
- savčí chromozomy MeSH
- skot MeSH
- translokace genetická MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Akutní leukemie (AL) představují heterogenní skupinu maligních onemocnění krvetvorby s různou prognózou. Díky této různorodosti AL nelze s jistotou predikovat odpověď pacienta na léčbu. Proto je velmi důležité sledovat množství zbytkové maligní populace buněk po léčbě, tzv. minimální reziduální nemoc (MRN). K detekci MRN se běžně využívají rekurentní cytogenetické abnormality a mutace v hematologicky významných genech, které jsou rutinním screeningem identifikovány u naprosté většiny dospělých pacientů s akutní lymfoblastickou leukemií a přibližně u poloviny dospělých pacientů s akutní myeloidní leukemií. Z tohoto důvodu je velmi žádoucí identifikovat nové specifické markery leukemických blastů, které budou sloužit ke sledování MRN u pacientů, u nichž nebyla nalezena žádná ze standardně vyšetřovaných aberací. Naším cílem bylo vyvinout zcela nový technický přístup k identifikaci a mapování unikátních klonálně specifických chromozomových abnormalit až na úroveň jednotlivých nukleotidů, a to pomocí moderních technik molekulární cytogenetiky, zejména mnohobarevné fluorescenční in situ hybridizace, mnohobarevného pruhování chromozomů (mFISH, mBAND) a multiplexní hybridizace fluorescenčně značených sond (BAC-FISH). Pro vyšší rozlišení byly fluorescenčně značené sondy aplikovány na linearizovaná vlákna DNA (molecular combing, fiber-FISH). Dalším nástrojem, který byl využit k přesné identifikaci zlomových míst aberovaných chromozomů byla mikrodisekce derivovaných chromozomů a následné sekvenování disekovaného materiálu pomocí technologie sekvenování nové generace (NGS). Posledním krokem byla konstrukce specifické molekulární PCR eseje v reálném čase pro monitorování MRN, která umožňuje sledovat odpověď pacienta na léčbu, příp. včas zachytit počínající molekulární relaps onemocnění. Moderní technologie umožňují detekovat a identifikovat unikátní klonálně specifické abnormality u pacientů s AL. Předložená práce jasně ukazuje, že mapování chromozomových aberací až na úroveň nukleotidů je pro vybrané pacienty s AL realizovatelné a vhodné pro standardní klinickou praxi. Jedná se o laboratorní přístup „šitý na míru“ nemocných s AL, který naplňuje naši představu o personalizované medicíně.
Acute leukaemia (AL) comprises a heterogeneous group of haematological malignancies with varying prognoses. In light of this heterogeneity, individual patient response to treatment can be difficult to predict. Sensitive monitoring of residual leukemic cell populations (minimal residual disease – MRD) is thus very important and holds great potential for improving treatment strategies. Commonly used MRD targets include recurrent cytogenetic abnormalities and mutations in important haematological genes. Unfortunately, such targets are identified in a majority of adult ALL patients but only in about 50% of adult AML patients. Identification of new specific leukemic blast molecular markers for MRD assessment is therefore highly desirable. Our goal was to develop a unique technical approach for the identification and mapping of clone-specific chromosomal abnormalities down to the single nucleotide level using current molecular cytogenetic techniques, particularly multicolour fluorescence in situ hybridization, multicolour chromosome banding (mFISH, mBAND) and multiplex hybridization of fluorescently labelled BAC clones (BAC-FISH). Higher resolution was achieved by hybridization of fluorescent probes to combed DNA fibres (molecular combing, fibre-FISH). Another approach used for the precise identification of chromosomal breakpoints was chromosome micro dissection followed by next-generation sequencing (NGS) of the dissected material. Finally, a specific Real-Time PCR assay to monitor MRD was designed. Modern technologies open new vistas for the detection and identification of unique clone-specific abnormalities in AL patients. Our work clearly suggests that mapping from the chromosomal level down to the nucleotide level is feasible and readily applicable in eligible AL patients, allowing its´ use in standard clinical practice and as a tool for personalized „tailor-made“ medicine.
- Klíčová slova
- akutní leukemie, personalizovaná medicína, sekvenování nové generace, chromozomová mikrodisekce, molekulární cytogenetika, minimální reziduální nemoc, mFISH, mBAND,
- MeSH
- akutní lymfatická leukemie genetika MeSH
- akutní myeloidní leukemie genetika MeSH
- body zlomu chromozomu MeSH
- chromozomální aberace MeSH
- cytogenetické vyšetření * metody MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- malování chromozomů MeSH
- mapování chromozomů metody MeSH
- pilotní projekty MeSH
- polymerázová řetězová reakce metody MeSH
- reziduální nádor * diagnóza genetika MeSH
- sekvenční analýza DNA metody MeSH
- vyšetřování kostní dřeně MeSH
- výzkum * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- hodnotící studie MeSH
- práce podpořená grantem MeSH
The Cervidae family comprises more than fifty species divided into three subfamilies: Capreolinae, Cervinae and Hydropotinae. A characteristic attribute for the species included in this family is the great karyotype diversity, with the chromosomal numbers ranging from 2n = 6 observed in female Muntiacus muntjak vaginalis to 2n = 70 found in Mazama gouazoubira as a result of numerous Robertsonian and tandem fusions. This work reports chromosomal homologies between cattle (Bos taurus, 2n = 60) and nine cervid species using a combination of whole chromosome and region-specific paints and BAC clones derived from cattle. We show that despite the great diversity of karyotypes in the studied species, the number of conserved chromosomal segments detected by 29 cattle whole chromosome painting probes was 35 for all Cervidae samples. The detailed analysis of the X chromosomes revealed two different morphological types within Cervidae. The first one, present in the Capreolinae is a sub/metacentric X with the structure more similar to the bovine X. The second type found in Cervini and Muntiacini is an acrocentric X which shows rearrangements in the proximal part that have not yet been identified within Ruminantia. Moreover, we characterised four repetitive sequences organized in heterochromatic blocks on sex chromosomes of the reindeer (Rangifer tarandus). We show that these repeats gave no hybridization signals to the chromosomes of the closely related moose (Alces alces) and are therefore specific to the reindeer.