Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
- MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- fyziologická adaptace * genetika MeSH
- genom bakteriální * MeSH
- nízká teplota * MeSH
- profágy genetika MeSH
- Pseudomonas * genetika klasifikace MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenování celého genomu MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
Skin and soft tissue infections (SSTIs) represent a significant healthcare challenge, particularly in the context of increasing antibiotic resistance. This study investigates the efficacy of a novel therapeutic approach combining bacteriophage (phage) therapy with a gum Karaya (GK)-based hydrogel delivery system in a porcine model of deep staphylococcal SSTIs. The study exploits the lytic activity and safety of the Staphylococcus phage 812K1/420 of the Kayvirus genus, which is active against methicillin-resistant Staphylococcus aureus (MRSA). The GK injectable hydrogels and hydrogel films, developed by our research group, serve as effective, non-toxic, and easy-to-apply delivery systems, supporting moist wound healing and re-epithelialization. In the porcine model, the combined treatment showed asynergistic effect, leading to a significant reduction in bacterial load (2.5 log CFU/gram of tissue) within one week. Local signs of inflammation were significantly reduced by day 8, with clear evidence of re-epithelialization and wound contraction. Importantly, no adverse effects of the GK-based delivery system were observed throughout the study. The results highlight the potential of this innovative therapeutic approach to effectively treat deep staphylococcal SSTIs, providing a promising avenue for further research and clinical application in the field of infections caused by antibiotic-resistant bacteria.
- MeSH
- fágová terapie * metody MeSH
- hojení ran účinky léků MeSH
- hydrogely * aplikace a dávkování chemie MeSH
- infekce v ráně * terapie mikrobiologie farmakoterapie MeSH
- methicilin rezistentní Staphylococcus aureus * účinky léků MeSH
- modely nemocí na zvířatech * MeSH
- prasata MeSH
- rostlinné gumy chemie MeSH
- stafylokokové bakteriofágy MeSH
- stafylokokové infekce * terapie farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nocardia spp., which belongs to one of the Nocardio-form filamentous bacteria, is usually surface hydrophobic and when overproduced attaches to the surface of bubbles under the action of surfactants, allowing the stable presence of foam on the surface of aeration tanks, leading to the occurrence of sludge-foaming events. Two novel phages, P69 and KYD2, were isolated from the environment, and their hosts were Nocardia transvalensis and Nocardia carnea, respectively. These two phages are Siphophages-like with long tails. An aeration tank pilot plant was constructed in the laboratory to simulate sludge foaming, and these two strains of phage were applied. Compared with the reactor not dosed with phage, the application of phage could reduce the host level in the reactor, resulting in the highest decrease in turbidity by more than 68% and sludge volume index by more than 25%. The time for surface foam disappearance was 9 h earlier than that of the control group (the group with the same concentration of Nocardia carnea but no bacteriophage applied), significantly improving water quality. The phage can effectively inhibit the propagation of Nocardia in the actual sludge-foaming event, control the sludge foaming, and improve the effluent quality. It provides a novel and relatively economical solution for controlling sludge foaming in sewage treatment plants in the future, shows that the phages have potential application value in the prevention and control of Nocardia, and provides another way to control the sludge-foaming event caused by the excessive reproduction of Nocardia in the future.
Outflows from secondary stages of conventional me-chanical-biological wastewater treatment plants (WWTPs) still contain significant concentrations of faecal pollution indicators suggesting the potential presence of pathogenic organisms. The decrease in the concentration of somatic coliphages and bacterial indicators of faecal pollution during the technological stages (coagulation, sand filtra-tion, membrane ultrafiltration, sorption on granular acti-vated carbon, disinfection, accumulation) of a semi-operational plant designed for multi-stage tertiary treat-ment or rather recycling of treated wastewater was moni-tored and discussed. During the tertiary treatment, faecal bacteria indicators were better removed than somatic coliphages, hence the inclusion of somatic indicators among faecal pollution indicators in water quality control for reuse is entirely appropriate. Subsequent tertiary treat-ment, including disinfection, is essential for safe reuse of treated water.
Bacteriophages of Borrelia burgdorferi are a biologically important but under-investigated feature of the Lyme disease-causing spirochete. No virulent borrelial viruses have been identified, but all B. burgdorferi isolates carry a prophage φBB1 as resident circular plasmids. Like its host, the φBB1 phage is quite distinctive and shares little sequence similarity with other known bacteriophages. We expressed φBB1 head morphogenesis proteins in Escherichia coli which resulted in assembly of homogeneous prolate procapsid structures and used cryo-electron microscopy to determine the three-dimensional structure of these particles. The φBB1 procapsids consist of 415 copies of the major capsid protein and an equal combined number of three homologous capsid decoration proteins that form trimeric knobs on the outside of the particle. One of the end vertices of the particle is occupied by a portal assembled from twelve copies of the portal protein. The φBB1 scaffolding protein is entirely α-helical and has an elongated shape with a small globular domain in the middle. Within the tubular section of the procapsid, the internal scaffold is built of stacked rings, each composed of 32 scaffolding protein molecules, which run in opposite directions from both caps with a heterogeneous part in the middle. Inside the portal-containing cap, the scaffold is organized asymmetrically with ten scaffolding protein molecules bound to the portal. The φBB1 procapsid structure provides better insight into the vast structural diversity of bacteriophages and presents clues of how elongated bacteriophage particles might be assembled.
Léčba infekčních onemocnění kůže a měkkých tkání je každodenní praxí lékařů chirurgických oborů, a i přes široké terapeutické možnosti stále představuje značné riziko morbidity i mortality, zejména u těžkých stavů spojených s nekrotizujícími infekcemi. Výskyt patogenních kmenů s rezistencí k antibiotické terapii je i u těchto onemocnění stoupajícím problémem, který vede ke snaze hledat jiné terapeutické možnosti. Jednou ze slibných variant může být i fágová terapie, která právě díky výskytu antibiotických rezistencí zažívá renesanci na poli výzkumu a má potenciál zaujmout místo i v klinické praxi.
Therapy of infectious diseases of skin and soft tissue is a daily part of clinical practice at surgical departments. Despite a wide spectrum of antimicrobial therapeuticals, it still remains a significant morbidity and mortality, especially in the serious cases connected with necrotizing infection. Occurrence of the multiresistant variant of the pathogen is an increasing problem leading to the effort to find other effective therapeutic possibilities. A phage therapy appears to be one of the promising variants with a potential to become a part of common clinical practice.
- MeSH
- bakteriofágy MeSH
- fágová terapie MeSH
- infekce měkkých tkání * terapie MeSH
- infekční nemoci kůže * terapie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Pseudomonas aeruginosa (PA) is considered the first causal agent of morbidity and mortality in people with cystic fibrosis (CF) disease. Multi-resistant strains have emerged due to prolonged treatment with specific antibiotics, so new alternatives have been sought for their control. In this context, there is a renewed interest in therapies based on bacteriophages (phages) supported by several studies suggesting that therapy based on lytic phages and biofilm degraders may be promising for the treatment of lung infections in CF patients. However, there is little clinical data about phage studies in CF and the effectiveness and safety in patients with this disease has not been clear. Therefore, studies regarding on phage characterization, selection, and evaluation in vitro and in vivo models will provide reliable information for designing effective cocktails, either using mixed phages or in combination with antibiotics, making a great progress in clinical research. Hence, this review focuses on the most relevant and recent findings on the activity of lytic phages against PA strains isolated from CF patients and hospital environments, and discusses perspectives on the use of phage therapy on the treatment of PA in CF patients.
- MeSH
- antibakteriální látky MeSH
- bakteriofágy * MeSH
- cystická fibróza * MeSH
- fágy pseudomonád * MeSH
- lidé MeSH
- pseudomonádové infekce * MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Reducing bacterial pathogen contamination not only improves overall global public health but also diminishes food waste and loss. The use of lytic bacteriophages (phages) that infect and kill bacteria could be a beneficial tool for suppressing bacterial growth during dairy products storage time. Four Enterobacter cloacae (E. cloacae) complex isolates which were previously isolated from contaminated dairy products were used to identify lytic phages in wastewater. Phages specific to multi-drug resistant (MDR) E. cloacae complex 6AS1 were isolated from local sewage. Two novel phages vB_EclM-EP1 and vB_EclM-EP2 were identified as myoviral particles and have double-stranded DNA genome. Their host range and lytic capabilities were detected using spot test and efficiency of plating (EOP) against several bacterial isolates. The phages had a latent period of 30 min, and a large burst size of about 100 and 142 PFU/cell for vB_EclM-EP1 and vB_EclM-EP2, respectively. Both phages were viable at pH ranging 5-9 and stable at 70 °C for 60 min. The individual phages and their cocktail preparations (vB_EclM-EP1 and vB_EclM-EP2) reduced and inhibited the growth of E. cloacae complex 6AS1 during challenge test in milk and yogurt samples. These results indicate that the E. cloacae complex-specific phages (vB_EclM-EP1 and vB_EclM-EP2) have a potential application as microbicidal agents in packaged milk and milk derivatives during storage time. In addition, our environment is a rich sources of lytic phages which have potential use in eliminating multidrug-resistant isolates in food industry as well as in biocontrol.
- MeSH
- bakteriofágy * genetika MeSH
- Enterobacter cloacae MeSH
- jogurt MeSH
- mléko mikrobiologie MeSH
- odpadky - odstraňování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- antibiotická rezistence * účinky léků MeSH
- bakteriální infekce farmakoterapie MeSH
- bakteriofágy izolace a purifikace klasifikace růst a vývoj MeSH
- fágová terapie * dějiny metody MeSH
- lidé MeSH
- profágy patogenita MeSH
- průmyslová mikrobiologie trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
Salmonella enterica serovar Kentucky is one of the food-borne zoonotic pathogens which is isolated in high frequency from poultry meat in the recent decades and is known for its multidrug resistance. The current study was aimed to isolate and characterize a bacteriophage against S. enterica serovar Kentucky isolate, 5925, which showed resistance to at least seven antibiotics and to study its efficiency to decontaminate S. Kentucky from chicken skin. The bacteriophage against S. enterica serovar Kentucky was isolated and was named vB_SenS_Ib_psk2 representing the place, source, and host. Electron microscopy revealed that the phage possesses isometric head and contractile tail, indicative of Siphoviridae family. Molecular detection of major capsid protein E gene yielded 511 bp, and NCBI blast analysis revealed that the phage belonged to the genus chivirus. The optimum temperature and pH for phage survival and multiplication were found to be - 20 to 42 °C and 6-10, respectively. One-step growth curve experiment of vB_SenS_Ib_psk2 revealed a latent period of 20 min and burst size of 253 phages/bacterial cell. The host susceptibility studies revealed that 83% of MDR isolates of S. enterica were susceptible to vB_SenS_Ib_psk2. Artificial spiking studies on chicken skin revealed that high multiplicity of infection (MOI) of phages of 106 pfu/mL is required for significant reduction (p ≤ 0.01) of bacterial concentration (0.14 ± 0.04) after 24-h incubation at 8 °C compared to group 1 (2.55 ± 0.89 cfu/mL).
- MeSH
- antibakteriální látky MeSH
- bakteriofágy * genetika MeSH
- Salmonella enterica * MeSH
- séroskupina MeSH
- Siphoviridae * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kentucky MeSH