Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
- MeSH
- dějiny starověku MeSH
- diploidie MeSH
- genom lidský * MeSH
- genotyp MeSH
- ledový příkrov MeSH
- lidé MeSH
- lov dějiny MeSH
- metagenomika * MeSH
- migrace lidstva * dějiny MeSH
- populační genetika * MeSH
- zemědělství dějiny MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Černé moře MeSH
- Evropa etnologie MeSH
- západní Asie MeSH
The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.
- MeSH
- dějiny starověku MeSH
- domestikace MeSH
- fylogeneze * MeSH
- genom * genetika MeSH
- genomika * MeSH
- mutace MeSH
- nádorové supresorové proteiny genetika MeSH
- psi * genetika MeSH
- selekce (genetika) MeSH
- starobylá DNA analýza MeSH
- vlci * klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- psi * genetika MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Afrika MeSH
- Evropa MeSH
- Severní Amerika MeSH
- Sibiř MeSH
- Střední východ MeSH
- Názvy látek
- nádorové supresorové proteiny MeSH
- starobylá DNA MeSH
Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.
- Klíčová slova
- Approximate Bayesian Computation, Pleistocene, ancient DNA, coalescent modelling, megafauna, population structure, population turnover, wolves,
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- mitochondriální DNA genetika MeSH
- psi MeSH
- starobylá DNA * MeSH
- tok genů MeSH
- vlci * genetika MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální DNA MeSH
- starobylá DNA * MeSH
In Fig. 2 of this Letter, the 'E' and 'G' clade labels were inadvertently reversed, and in Table 2 the genotype of DA27 was 'D1' instead of 'D5'. These have been corrected online.
- Publikační typ
- časopisecké články MeSH
- tisková chyba MeSH
Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to ∼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9-99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from ∼0.5 to ∼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed ∼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to ∼5.0-6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.
- Klíčová slova
- ancient DNA, paleo virology, parvovirus B19, virology, virus evolution,
- MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- erythema infectiosum genetika dějiny MeSH
- fylogeneze * MeSH
- genom virový * MeSH
- genotyp * MeSH
- lidé MeSH
- lidský parvovirus B19 genetika MeSH
- molekulární evoluce * MeSH
- sekvenční analýza DNA * MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Hepatitis B virus (HBV) is a major cause of human hepatitis. There is considerable uncertainty about the timescale of its evolution and its association with humans. Here we present 12 full or partial ancient HBV genomes that are between approximately 0.8 and 4.5 thousand years old. The ancient sequences group either within or in a sister relationship with extant human or other ape HBV clades. Generally, the genome properties follow those of modern HBV. The root of the HBV tree is projected to between 8.6 and 20.9 thousand years ago, and we estimate a substitution rate of 8.04 × 10-6-1.51 × 10-5 nucleotide substitutions per site per year. In several cases, the geographical locations of the ancient genotypes do not match present-day distributions. Genotypes that today are typical of Africa and Asia, and a subgenotype from India, are shown to have an early Eurasian presence. The geographical and temporal patterns that we observe in ancient and modern HBV genotypes are compatible with well-documented human migrations during the Bronze and Iron Ages1,2. We provide evidence for the creation of HBV genotype A via recombination, and for a long-term association of modern HBV genotypes with humans, including the discovery of a human genotype that is now extinct. These data expose a complexity of HBV evolution that is not evident when considering modern sequences alone.
- MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- fylogeneze * MeSH
- genotyp MeSH
- hepatitida B virologie MeSH
- Hominidae virologie MeSH
- lidé MeSH
- migrace lidstva dějiny MeSH
- molekulární evoluce * MeSH
- rekombinace genetická MeSH
- virus hepatitidy B klasifikace genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Afrika MeSH
- Asie MeSH
- Evropa MeSH