BACKGROUND: North American bat populations have suffered severe declines over the last decade due to the Pseudogymnoascus destructans fungus infection. The skin disease associated with this causative agent, known as white-nose syndrome (WNS), is specific to bats hibernating in temperate regions. As cultured fungal isolates are required for epidemiological and phylogeographical studies, the purpose of the present work was to compare the efficacy and reliability of different culture approaches based on either skin swabs or wing membrane tissue biopsies for obtaining viable fungal isolates of P. destructans. RESULTS: In total, we collected and analysed 69 fungal and 65 bacterial skin swabs and 51 wing membrane tissue biopsies from three bat species in the Czech Republic, Poland and the Republic of Armenia. From these, we obtained 12 viable P. destructans culture isolates. CONCLUSIONS: Our results indicated that the efficacy of cultures based on wing membrane biopsies were significantly higher. Cultivable samples tended to be based on collections from bats with lower body surface temperature and higher counts of UV-visualised lesions. While cultures based on both skin swabs and wing membrane tissue biopsies can be utilised for monitoring and surveillance of P. destructans in bat populations, wing membrane biopsies guided by UV light for skin lesions proved higher efficacy. Interactions between bacteria on the host's skin also appear to play an important role.
- Klíčová slova
- Bats, Fungal culture, Fungal infection, Pseudogymnoascus destructans skin microbiota, UV lesions,
- MeSH
- Chiroptera * mikrobiologie MeSH
- hibernace * MeSH
- kožní nemoci * veterinární MeSH
- kultivační média MeSH
- kůže patologie MeSH
- reprodukovatelnost výsledků MeSH
- syndrom MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kultivační média MeSH
Leptospirosis is a bacterial zoonotic infection of worldwide occurrence. Bats, like other mammalian reservoirs, may be long-term carriers that maintain endemicity of infection and shed viable leptospires in urine. Direct and/or indirect contact with these Leptospira shedders is the main risk factor as regards public health concern. However, knowledge about bat leptospirosis in the Palearctic Region, and in Europe in particular, is poor. We collected urine from 176 specimens of 11 bat species in the Czech Republic, Poland, Republic of Armenia and the Altai Region of Russia between 2014 and 2019. We extracted DNA from the urine samples to detect Leptospira spp. shedders using PCR amplification of the 16S rRNA and LipL32 genes. Four bat species (Barbastella barbastellus n = 1, Myotis bechsteinii n = 1, Myotis myotis n = 24 and Myotis nattereri n = 1) tested positive for Leptospira spp., with detected amplicons showing 100% genetic identity with pathogenic Leptospira interrogans. The site- and species-specific prevalence range was 0%-24.1% and 0%-20%, respectively. All bats sampled in the Republic of Armenia and Russia were negative. Given the circulation of pathogenic leptospires in strictly protected Palearctic bat species and their populations, non-invasive and non-lethal sampling of urine for molecular Leptospira spp. detection is recommended as a suitable surveillance and monitoring strategy. Moreover, our results should raise awareness of this potential disease risk among health professionals, veterinarians, chiropterologists and wildlife rescue workers handling bats, as well as speleologists and persons cleaning premises following bat infestation.
- Klíčová slova
- Chiroptera, genetic classification, non-invasive sampling, pathogenic Leptospira, prevalence, reservoirs, urine,
- MeSH
- Chiroptera * MeSH
- Leptospira * genetika MeSH
- leptospiróza * epidemiologie veterinární MeSH
- polymerázová řetězová reakce veterinární MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
BACKGROUND: Palearctic bats host a diversity of lyssaviruses, though not the classical rabies virus (RABV). As surveillance for bat rabies over the Palearctic area covering Central and Eastern Europe and Siberian regions of Russia has been irregular, we lack data on geographic and seasonal patterns of the infection. RESULTS: To address this, we undertook serological testing, using non-lethally sampled blood, on 1027 bats of 25 species in Bulgaria, the Czech Republic, Poland, Russia and Slovenia between 2014 and 2018. The indirect enzyme-linked immunosorbent assay (ELISA) detected rabies virus anti-glycoprotein antibodies in 33 bats, giving an overall seroprevalence of 3.2%. Bat species exceeding the seroconversion threshold included Myotis blythii, Myotis gracilis, Myotis petax, Myotis myotis, Murina hilgendorfi, Rhinolophus ferrumequinum and Vespertilio murinus. While Myotis species (84.8%) and adult females (48.5%) dominated in seropositive bats, juveniles of both sexes showed no difference in seroprevalence. Higher numbers tested positive when sampled during the active season (10.5%), as compared with the hibernation period (0.9%). Bat rabies seroprevalence was significantly higher in natural habitats (4.0%) compared with synanthropic roosts (1.2%). Importantly, in 2018, we recorded 73.1% seroprevalence in a cave containing a M. blythii maternity colony in the Altai Krai of Russia. CONCLUSIONS: Identification of such "hotspots" of non-RABV lyssavirus circulation not only provides important information for public health protection, it can also guide research activities aimed at more in-depth bat rabies studies.
- Klíčová slova
- Chiroptera, Europe, Siberia, blood samples, rabies, seroprevalence,
- MeSH
- Chiroptera virologie MeSH
- ekosystém MeSH
- infekce viry z čeledi Rhabdoviridae epidemiologie MeSH
- jeskyně MeSH
- Lyssavirus izolace a purifikace MeSH
- protilátky virové krev MeSH
- roční období MeSH
- séroepidemiologické studie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- Rusko epidemiologie MeSH
- Názvy látek
- protilátky virové MeSH
White-nose syndrome (WNS) is a fungal disease caused by Pseudogymnoascus destructans that is devastating to Nearctic bat populations but tolerated by Palearctic bats. Temperature is a factor known to be important for fungal growth and bat choice of hibernation. Here we investigated the effect of temperature on the pathogenic fungal growth in the wild across the Palearctic. We modelled body surface temperature of bats with respect to fungal infection intensity and disease severity and were able to relate this to the mean annual surface temperature at the site. Bats that hibernated at lower temperatures had less fungal growth and fewer skin lesions on their wings. Contrary to expectation derived from laboratory P. destructans culture experiments, natural infection intensity peaked between 5 and 6°C and decreased at warmer hibernating temperature. We made predictive maps based on bat species distributions, temperature and infection intensity and disease severity data to determine not only where P. destructans will be found but also where the infection will be invasive to bats across the Palearctic. Together these data highlight the mechanistic model of the interplay between environmental and biological factors, which determine progression in a wildlife disease.
- Klíčová slova
- Chiroptera, fungal load, fuzzy regression, histopathology, thermal preference, white-nose syndrome,
- Publikační typ
- časopisecké články MeSH
In underground hibernacula temperate northern hemisphere bats are exposed to Pseudogymnoascus destructans, the fungal agent of white-nose syndrome. While pathological and epidemiological data suggest that Palearctic bats tolerate this infection, we lack knowledge about bat health under pathogen pressure. Here we report blood profiles, along with body mass index (BMI), infection intensity and hibernation temperature, in greater mouse-eared bats (Myotis myotis). We sampled three European hibernacula that differ in geomorphology and microclimatic conditions. Skin lesion counts differed between contralateral wings of a bat, suggesting variable exposure to the fungus. Analysis of blood parameters suggests a threshold of ca. 300 skin lesions on both wings, combined with poor hibernation conditions, may distinguish healthy bats from those with homeostatic disruption. Physiological effects manifested as mild metabolic acidosis, decreased glucose and peripheral blood eosinophilia which were strongly locality-dependent. Hibernating bats displaying blood homeostasis disruption had 2 °C lower body surface temperatures. A shallow BMI loss slope with increasing pathogen load suggested a high degree of infection tolerance. European greater mouse-eared bats generally survive P. destructans invasion, despite some health deterioration at higher infection intensities (dependant on hibernation conditions). Conservation measures should minimise additional stressors to conserve constrained body reserves of bats during hibernation.
- MeSH
- Ascomycota fyziologie MeSH
- Chiroptera krev mikrobiologie fyziologie MeSH
- hibernace * MeSH
- index tělesné hmotnosti MeSH
- interakce hostitele a patogenu * MeSH
- kožní nemoci krev mikrobiologie patologie veterinární MeSH
- mykózy krev mikrobiologie patologie veterinární MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
While white-nose syndrome (WNS) has decimated hibernating bat populations in the Nearctic, species from the Palearctic appear to cope better with the fungal skin infection causing WNS. This has encouraged multiple hypotheses on the mechanisms leading to differential survival of species exposed to the same pathogen. To facilitate intercontinental comparisons, we proposed a novel pathogenesis-based grading scheme consistent with WNS diagnosis histopathology criteria. UV light-guided collection was used to obtain single biopsies from Nearctic and Palearctic bat wing membranes non-lethally. The proposed scheme scores eleven grades associated with WNS on histopathology. Given weights reflective of grade severity, the sum of findings from an individual results in weighted cumulative WNS pathology score. The probability of finding fungal skin colonisation and single, multiple or confluent cupping erosions increased with increase in Pseudogymnoascus destructans load. Increasing fungal load mimicked progression of skin infection from epidermal surface colonisation to deep dermal invasion. Similarly, the number of UV-fluorescent lesions increased with increasing weighted cumulative WNS pathology score, demonstrating congruence between WNS-associated tissue damage and extent of UV fluorescence. In a case report, we demonstrated that UV-fluorescence disappears within two weeks of euthermy. Change in fluorescence was coupled with a reduction in weighted cumulative WNS pathology score, whereby both methods lost diagnostic utility. While weighted cumulative WNS pathology scores were greater in the Nearctic than Palearctic, values for Nearctic bats were within the range of those for Palearctic species. Accumulation of wing damage probably influences mortality in affected bats, as demonstrated by a fatal case of Myotis daubentonii with natural WNS infection and healing in Myotis myotis. The proposed semi-quantitative pathology score provided good agreement between experienced raters, showing it to be a powerful and widely applicable tool for defining WNS severity.
- MeSH
- Ascomycota genetika fyziologie MeSH
- Chiroptera metabolismus mikrobiologie MeSH
- DNA fungální genetika MeSH
- fylogeneze MeSH
- kožní nemoci mikrobiologie patologie MeSH
- křídla zvířecí mikrobiologie patologie účinky záření MeSH
- lineární modely MeSH
- optické zobrazování MeSH
- stupeň závažnosti nemoci MeSH
- ultrafialové záření MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA fungální MeSH