New research suggests that exposure to ultrafine particles (UFPs; particle diameter dp < 100 nm) is particularly harmful to brain health. One pathway into the body is via deposition in the respiratory system, where the smallest UFPs deposit efficiently in human extrathoracic airways. Traffic is a major source of these particles, yet sub-23 nm (dp < 23 nm) particles are currently unregulated in engine emission testing worldwide, including the stringent requirements of the European Union, nor are there requirements for ambient monitoring. In this study, we report size-resolved particle number emission factors (EFs) for traffic and estimates of extrathoracic dose rates of sub-23 nm particles. The EFs and dose rates are based on measurements conducted in different urban environments, including roads, tunnels, an airport, and a riverside, in two Central European cities (Düsseldorf and Prague) from March to April 2022. A key difference between the cities is that Düsseldorf has a low-emission zone in its central area and a newer vehicle fleet compared to Prague. Overall, traffic-influenced sites had large EFs for sub-23 nm particles. In the highway and tunnel environments, EFs of particles with dp > 2.5 nm were between 2 and 18 times greater than the EFs of particles with dp > 23 nm. Near the airport, the EF of particles with dp > 23 nm was already high, being 2-9 times higher than in other environments. The number concentrations of sub-23 nm particles varied significantly within the studied cities, and dose rates (measured in billions of particles per hour) differed by up to a factor of ten or more depending on the location.
- Klíčová slova
- Air quality, Concentration, Exposure, Ultrafine, Urban pollution,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí * MeSH
- pevné částice * analýza MeSH
- velikost částic MeSH
- velkoměsta MeSH
- výfukové emise vozidel * analýza MeSH
- vystavení vlivu životního prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice * MeSH
- výfukové emise vozidel * MeSH
Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11-20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV-VIS radiation presenting highly variable absorption properties in Europe.
- Klíčová slova
- Air quality, European overview, Light absorption, Long-term datasets, Organic aerosols,
- MeSH
- aerosoly analýza MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí * MeSH
- pevné částice * analýza MeSH
- světlo MeSH
- uhlík * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- aerosoly MeSH
- látky znečišťující vzduch * MeSH
- pevné částice * MeSH
- uhlík * MeSH
There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method. Datasets evaluated include 14 urban background (UB), 5 traffic (TR), 4 suburban background (SUB), and 1 regional background (RB) sites, covering 18 European and 1 USA cities, over the period, when available, from 2009 to 2019. Ten factors were identified (4 road traffic factors, photonucleation, urban background, domestic heating, 2 regional factors and long-distance transport), with road traffic being the primary contributor at all UB and TR sites (56-95 %), and photonucleation being also significant in many cities. The trends analyses showed a notable decrease in traffic-related UFP ambient concentrations, with statistically significant decreasing trends for the total traffic-related factors of -5.40 and -2.15 % yr-1 for the TR and UB sites, respectively. This abatement is most probably due to the implementation of European emissions standards, particularly after the introduction of diesel particle filters (DPFs) in 2011. However, DPFs do not retain nucleated particles generated during the dilution of diesel exhaust semi-volatile organic compounds (SVOCs). Trends in photonucleation were more diverse, influenced by a reduction in the condensation sink potential facilitating new particle formation (NPF) or by a decrease in the emissions of UFP precursors. The decrease of primary PM emissions and precursors of UFP also contributed to the reduction of urban and regional background sources.
- Klíčová slova
- Air quality, New particle formation, Particle number size distributions, Positive matrix factorization, Traffic emissions, Ultrafine particles,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí * metody MeSH
- pevné částice * analýza MeSH
- velikost částic * MeSH
- velkoměsta * MeSH
- výfukové emise vozidel * analýza MeSH
- znečištění ovzduší statistika a číselné údaje analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- velkoměsta * MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice * MeSH
- výfukové emise vozidel * MeSH
Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.
- Klíčová slova
- Air quality, Ambient air, Nanoparticles, Particle number concentrations,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí metody MeSH
- pevné částice analýza MeSH
- velikost částic MeSH
- velkoměsta MeSH
- výfukové emise vozidel analýza MeSH
- znečištění ovzduší * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- Geografické názvy
- Evropa MeSH
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- výfukové emise vozidel MeSH
A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.
- Klíčová slova
- Absorption, EC, FAPs, MAC, Rolling MAC, Site specific MAC, eBC,
- MeSH
- aerosoly analýza MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí metody MeSH
- pevné částice analýza MeSH
- roční období MeSH
- saze analýza MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- saze MeSH
- uhlík MeSH
This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated. The result showed that the peak concentrations of LDSA at UB and TR sites are commonly observed in the morning (06:00-8:00 UTC) and late evening (19:00-22:00 UTC), coinciding with traffic rush hours, biomass burning, and atmospheric stagnation periods. The only LDSA night-time peaks are observed on weekends. Due to the variability of emission sources and meteorology, the seasonal variability of the LDSA concentration revealed significant differences (p = 0.01) between the four seasons at all monitoring sites. Meanwhile, the correlations of LDSA with other pollutant metrics suggested that Aitken and accumulation mode particles play a significant role in the total LDSA concentration. The results also indicated that the main proportion of total LDSA is attributed to the ALV fraction (50 %), followed by the TB (34 %) and HA (16 %). Overall, this study provides valuable information of LDSA as a predictor in epidemiological studies and for the first time presenting total LDSA in a variety of European urban environments.
- Klíčová slova
- Particle number size distribution, Spatial variability, Total lung deposited surface area, Traffic emissions, Urban environment,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí metody MeSH
- pevné částice analýza MeSH
- plíce MeSH
- prach MeSH
- velikost částic MeSH
- výfukové emise vozidel analýza MeSH
- znečištění ovzduší * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- prach MeSH
- výfukové emise vozidel MeSH
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
- Klíčová slova
- Exposure, Human respiratory tract, Particulate matter, Regional aerosol, Ultrafine particles, Urban air quality,
- Publikační typ
- časopisecké články MeSH
The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.
- Klíčová slova
- Aerosols, Air quality, Atmospheric particulate matter, Nanoparticles, Particle number concentrations, Urban environment,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí MeSH
- pevné částice analýza MeSH
- saze MeSH
- velikost částic MeSH
- velkoměsta MeSH
- výfukové emise vozidel analýza MeSH
- znečištění ovzduší * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- saze MeSH
- výfukové emise vozidel MeSH
Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.
- Klíčová slova
- European Overview, Harmonised Protocol, Long-term Datasets, Organic Aerosol, Rolling PMF, Source apportionment,
- Publikační typ
- časopisecké články MeSH
Exhaust emissions of 23 individual city buses at Euro III, Euro IV and EEV (Enhanced Environmentally Friendly Vehicle) emission levels were measured by the chasing method under real-world conditions at a depot area and on the normal route of bus line 24 in Helsinki. The buses represented different technologies from the viewpoint of engines, exhaust after-treatment systems (ATS) and fuels. Some of the EEV buses were fueled by diesel, diesel-electric, ethanol (RED95) and compressed natural gas (CNG). At the depot area the emission factors were in the range of 0.3-21 × 10(14) # (kg fuel)(-1), 6-40 g (kg fuel)(-1), 0.004-0.88 g (kg fuel)(-1), 0.004-0.56 g (kg fuel)(-1), 0.01-1.2 g (kg fuel)(-1), for particle number (EFN), nitrogen oxides (EFNOx), black carbon (EFBC), organics (EFOrg), and particle mass (EFPM1), respectively. The highest particulate emissions were observed from the Euro III and Euro IV buses and the lowest from the ethanol and CNG-fueled buses, which emitted BC only during acceleration. The organics emitted from the CNG-fueled buses were clearly less oxidized compared to the other bus types. The bus line experiments showed that lowest emissions were obtained from the ethanol-fueled buses whereas large variation existed between individual buses of the same type indicating that the operating conditions by drivers had large effect on the emissions.
- MeSH
- látky znečišťující vzduch analýza chemie MeSH
- molekulová hmotnost MeSH
- motorová vozidla * MeSH
- velkoměsta MeSH
- výfukové emise vozidel analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Finsko MeSH
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
- výfukové emise vozidel MeSH