Individual physiotherapy is crucial in treating patients with various pain and health issues, and significantly impacts abdominal surgical outcomes and further medical problems. Recent technological and artificial intelligent advancements have equipped healthcare professionals with innovative tools, such as sensor systems and telemedicine equipment, offering groundbreaking opportunities to monitor and analyze patients' physical activity. This paper investigates the potential applications of mobile accelerometers in evaluating the symmetry of specific rehabilitation exercises using a dataset of 1280 tests on 16 individuals in the age range between 8 and 75 years. A comprehensive computational methodology is introduced, incorporating traditional digital signal processing, feature extraction in both time and transform domains, and advanced classification techniques. The study employs a range of machine learning methods, including support vector machines, Bayesian analysis, and neural networks, to evaluate the balance of various physical activities. The proposed approach achieved a high classification accuracy of 90.6% in distinguishing between left- and right-side motion patterns by employing features from both the time and frequency domains using a two-layer neural network. These findings demonstrate promising applications of precise monitoring of rehabilitation exercises to increase the probability of successful surgical recovery, highlighting the potential to significantly enhance patient care and treatment outcomes.
- Klíčová slova
- abdominal wall repair, accelerometers, computational intelligence, machine learning, motion symmetry, physical activity monitoring, rehabilitation,
- MeSH
- akcelerometrie * metody MeSH
- Bayesova věta MeSH
- cvičení fyziologie MeSH
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mobilní aplikace MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu MeSH
- senioři MeSH
- strojové učení MeSH
- support vector machine MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values -0.16 °C/min and -0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns.
This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human-machine interaction.
- Klíčová slova
- MS Kinect data acquisition, big data processing, breathing analysis, computational intelligence, human–machine interaction, image and depth sensors, neurological disorders, visualization,
- MeSH
- audiovizuální záznam MeSH
- časové faktory MeSH
- dýchání * MeSH
- lidé MeSH
- monitorování fyziologických funkcí přístrojové vybavení MeSH
- pohyb MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The monitoring of data from global positioning system (GPS) receivers and remote sensors of physiological and environmental data allow forming an information database for observed data processing. In this paper, we propose the use of such a database for the analysis of physical activities during cycling. The main idea of the proposed algorithm is to use cross-correlations between the heart rate and the altitude gradient to evaluate the delay between these variables and to study its time evolution. The data acquired during 22 identical cycling routes, each about 130 km long, include more than 6,700 segments of length 60 s recorded with varying sampling periods. General statistical and digital signal processing methods used include mathematical tools to reject gross errors, resampling using selected interpolation methods, digital filtering of noise signal components, and estimating cross-correlations between the position data and the physiological signals. The results of a regression between GPS and physiological data include the estimate of the time delay between the heart rate change and gradient altitude of about 7.5 s and its decrease during each training route.
- MeSH
- algoritmy MeSH
- cyklistika fyziologie MeSH
- geografické informační systémy * MeSH
- lidé MeSH
- počítačové zpracování signálu * MeSH
- regresní analýza MeSH
- srdeční frekvence fyziologie MeSH
- telemetrie metody MeSH
- zeměpis MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH