human–machine interaction Dotaz Zobrazit nápovědu
Although metagenomic sequencing is now the preferred technique to study microbiome-host interactions, analyzing and interpreting microbiome sequencing data presents challenges primarily attributed to the statistical specificities of the data (e.g., sparse, over-dispersed, compositional, inter-variable dependency). This mini review explores preprocessing and transformation methods applied in recent human microbiome studies to address microbiome data analysis challenges. Our results indicate a limited adoption of transformation methods targeting the statistical characteristics of microbiome sequencing data. Instead, there is a prevalent usage of relative and normalization-based transformations that do not specifically account for the specific attributes of microbiome data. The information on preprocessing and transformations applied to the data before analysis was incomplete or missing in many publications, leading to reproducibility concerns, comparability issues, and questionable results. We hope this mini review will provide researchers and newcomers to the field of human microbiome research with an up-to-date point of reference for various data transformation tools and assist them in choosing the most suitable transformation method based on their research questions, objectives, and data characteristics.
- Klíčová slova
- compositionality, data preprocessing, human microbiome, machine learning, metagenomics data, normalization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brain-computer interfaces are used for direct two-way communication between the human brain and the computer. Brain signals contain valuable information about the mental state and brain activity of the examined subject. However, due to their non-stationarity and susceptibility to various types of interference, their processing, analysis and interpretation are challenging. For these reasons, the research in the field of brain-computer interfaces is focused on the implementation of artificial intelligence, especially in five main areas: calibration, noise suppression, communication, mental condition estimation, and motor imagery. The use of algorithms based on artificial intelligence and machine learning has proven to be very promising in these application domains, especially due to their ability to predict and learn from previous experience. Therefore, their implementation within medical technologies can contribute to more accurate information about the mental state of subjects, alleviate the consequences of serious diseases or improve the quality of life of disabled patients.
- Klíčová slova
- Artificial intelligence, Artificial neural networks, Brain–computer interfaces, Fuzzy logic, Machine learning, Nature-inspired optimization techniques,
- MeSH
- algoritmy MeSH
- kvalita života MeSH
- lidé MeSH
- mozek MeSH
- počítače MeSH
- rozhraní mozek-počítač * MeSH
- strojové učení MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Empirical data on human evacuation behavior are invaluable for adjusting and training computational algorithms that simulate evacuation processes, including agent-based modeling. We provide a dataset on human decision-making during evacuations from virtual buildings, captured using experimental methods that controlled specific building layout parameters. An online experiment assigned participants a random subset of tasks featuring T-intersections. Data from 208 respondents, aged 17 to 71, were analyzed, considering education levels and excluding those with significant technical issues. Quantitative data on user interaction and evacuation route choices included decision time, mouse rotation, and the selected corridor, recorded through mouse clicks on invisible areas of interest. Respondents also self-reported their choice confidence on a Likert scale. Additionally, responses to final retrospective evaluation questionnaires were recorded. This dataset offers diverse research opportunities, particularly in emergency evacuation planning, where understanding evacuation choices in simulations can inform real-world strategies. It supports the development of models to predict human behavior in emergencies using machine learning and predictive modeling and is accessible for both academic and commercial use.
- MeSH
- dospělí MeSH
- internet MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- plánování postupu v případě katastrof MeSH
- rozhodování * MeSH
- senioři MeSH
- strojové učení MeSH
- výběrové chování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
BACKGROUND AND OBJECTIVE: In silico prediction of drug-target interactions (DTI) could provide valuable information and speed-up the process of drug repositioning - finding novel usage for existing drugs. In our work, we focus on machine learning algorithms supporting drug-centric repositioning approach, which aims to find novel usage for existing or abandoned drugs. We aim at proposing a per-drug ranking-based method, which reflects the needs of drug-centric repositioning research better than conventional drug-target prediction approaches. METHODS: We propose Bayesian Ranking Prediction of Drug-Target Interactions (BRDTI). The method is based on Bayesian Personalized Ranking matrix factorization (BPR) which has been shown to be an excellent approach for various preference learning tasks, however, it has not been used for DTI prediction previously. In order to successfully deal with DTI challenges, we extended BPR by proposing: (i) the incorporation of target bias, (ii) a technique to handle new drugs and (iii) content alignment to take structural similarities of drugs and targets into account. RESULTS: Evaluation on five benchmark datasets shows that BRDTI outperforms several state-of-the-art approaches in terms of per-drug nDCG and AUC. BRDTI results w.r.t. nDCG are 0.929, 0.953, 0.948, 0.897 and 0.690 for G-Protein Coupled Receptors (GPCR), Ion Channels (IC), Nuclear Receptors (NR), Enzymes (E) and Kinase (K) datasets respectively. Additionally, BRDTI significantly outperformed other methods (BLM-NII, WNN-GIP, NetLapRLS and CMF) w.r.t. nDCG in 17 out of 20 cases. Furthermore, BRDTI was also shown to be able to predict novel drug-target interactions not contained in the original datasets. The average recall at top-10 predicted targets for each drug was 0.762, 0.560, 1.000 and 0.404 for GPCR, IC, NR, and E datasets respectively. CONCLUSIONS: Based on the evaluation, we can conclude that BRDTI is an appropriate choice for researchers looking for an in silico DTI prediction technique to be used in drug-centric repositioning scenarios. BRDTI Software and supplementary materials are available online at www.ksi.mff.cuni.cz/∼peska/BRDTI.
- Klíčová slova
- Bayesian personalized ranking, Drug repositioning, Drug-target interactions, Machine learning,
- MeSH
- algoritmy MeSH
- Bayesova věta * MeSH
- datové soubory jako téma MeSH
- farmakologie * MeSH
- lidé MeSH
- přehodnocení terapeutických indikací léčivého přípravku MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this work, we extend the previously proposed approach of improving mutual perception during human-robot collaboration by communicating the robot's motion intentions and status to a human worker using hand-worn haptic feedback devices. The improvement is presented by introducing spatial tactile feedback, which provides the human worker with more intuitive information about the currently planned robot's trajectory, given its spatial configuration. The enhanced feedback devices communicate directional information through activation of six tactors spatially organised to represent an orthogonal coordinate frame: the vibration activates on the side of the feedback device that is closest to the future path of the robot. To test the effectiveness of the improved human-machine interface, two user studies were prepared and conducted. The first study aimed to quantitatively evaluate the ease of differentiating activation of individual tactors of the notification devices. The second user study aimed to assess the overall usability of the enhanced notification mode for improving human awareness about the planned trajectory of a robot. The results of the first experiment allowed to identify the tactors for which vibration intensity was most often confused by users. The results of the second experiment showed that the enhanced notification system allowed the participants to complete the task faster and, in general, improved user awareness of the robot's movement plan, according to both objective and subjective data. Moreover, the majority of participants (82%) favoured the improved notification system over its previous non-directional version and vision-based inspection.
- Klíčová slova
- haptic feedback device, human–machine interface, human–robot collaboration, human–robot interaction, mutual awareness, spatial tactile feedback,
- MeSH
- hmat MeSH
- lidé MeSH
- robotika * MeSH
- ruka MeSH
- uživatelské rozhraní počítače MeSH
- zpětná vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In a collaborative scenario, the communication between humans and robots is a fundamental aspect to achieve good efficiency and ergonomics in the task execution. A lot of research has been made related to enabling a robot system to understand and predict human behaviour, allowing the robot to adapt its motion to avoid collisions with human workers. Assuming the production task has a high degree of variability, the robot's movements can be difficult to predict, leading to a feeling of anxiety in the worker when the robot changes its trajectory and approaches since the worker has no information about the planned movement of the robot. Additionally, without information about the robot's movement, the human worker cannot effectively plan own activity without forcing the robot to constantly replan its movement. We propose a novel approach to communicating the robot's intentions to a human worker. The improvement to the collaboration is presented by introducing haptic feedback devices, whose task is to notify the human worker about the currently planned robot's trajectory and changes in its status. In order to verify the effectiveness of the developed human-machine interface in the conditions of a shared collaborative workspace, a user study was designed and conducted among 16 participants, whose objective was to accurately recognise the goal position of the robot during its movement. Data collected during the experiment included both objective and subjective parameters. Statistically significant results of the experiment indicated that all the participants could improve their task completion time by over 45% and generally were more subjectively satisfied when completing the task with equipped haptic feedback devices. The results also suggest the usefulness of the developed notification system since it improved users' awareness about the motion plan of the robot.
- Klíčová slova
- bidirectional awareness, haptic feedback device, human machine interface, human robot collaboration, human robot interaction, path planning,
- MeSH
- ergonomie MeSH
- lidé MeSH
- pohyb těles MeSH
- robotika * MeSH
- uživatelské rozhraní počítače MeSH
- zpětná vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This paper is devoted to a new method of using Microsoft (MS) Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com). The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human-machine interaction.
- Klíčová slova
- MS Kinect data acquisition, big data processing, breathing analysis, computational intelligence, human–machine interaction, image and depth sensors, neurological disorders, visualization,
- MeSH
- audiovizuální záznam MeSH
- časové faktory MeSH
- dýchání * MeSH
- lidé MeSH
- monitorování fyziologických funkcí přístrojové vybavení MeSH
- pohyb MeSH
- srdeční frekvence fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Current studies of gene × air pollution interaction typically seek to identify unknown heritability of common complex illnesses arising from variability in the host's susceptibility to environmental pollutants of interest. Accordingly, a single component generalized linear models are often used to model the risk posed by an environmental exposure variable of interest in relation to a priori determined DNA variants. However, reducing the phenotypic heterogeneity may further optimize such approach, primarily represented by the modeled DNA variants. Here, we reduce phenotypic heterogeneity of asthma severity, and also identify single nucleotide polymorphisms (SNP) associated with phenotype subgroups. Specifically, we first apply an unsupervised learning algorithm method and a non-parametric regression to find a biclustering structure of children according to their allergy and asthma severity. We then identify a set of SNPs most closely correlated with each sub-group. We subsequently fit a logistic regression model for each group against the healthy controls using benzo[a]pyrene (B[a]P) as a representative airborne carcinogen. Application of such approach in a case-control data set shows that SNP clustering may help to partly explain heterogeneity in children's asthma susceptibility in relation to ambient B[a]P concentration with greater efficiency.
- Klíčová slova
- air pollution, asthma, gene-environment interaction, polycyclic aromatic hydrocarbon, single nucleotide polymorphism,
- MeSH
- algoritmy MeSH
- benzopyren toxicita MeSH
- bronchiální astma chemicky indukované genetika MeSH
- dítě MeSH
- genetická predispozice k nemoci * MeSH
- interakce genů a prostředí MeSH
- jednonukleotidový polymorfismus MeSH
- látky znečišťující vzduch toxicita MeSH
- lidé MeSH
- multifaktoriální dědičnost * MeSH
- statistika jako téma MeSH
- strojové učení bez učitele MeSH
- studie případů a kontrol MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- znečištění ovzduší škodlivé účinky MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzopyren MeSH
- látky znečišťující vzduch MeSH
PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively.
- MeSH
- benchmarking MeSH
- datové soubory jako téma MeSH
- interakční proteinové domény a motivy MeSH
- internet MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- lidé MeSH
- ligandy MeSH
- proteiny chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- software * MeSH
- strojové učení * MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- proteiny MeSH
Amphiphilic molecules, forming self-assembled nanoarchitectures, are typically composed of hydrophobic and hydrophilic domains. Peptide amphiphiles can be designed from two, three, or four building blocks imparting novel structural and functional properties and affinities for interaction with cellular membranes or intracellular organelles. Here we present a combined numerical approach to design amphiphilic peptide scaffolds that are derived from the human nuclear Ki-67 protein. Ki-67 acts, like a biosurfactant, as a steric and electrostatic charge barrier against the collapse of mitotic chromosomes. The proposed predictive design of new Ki-67 protein-derived amphiphilic amino acid sequences exploits the computational outcomes of a set of web-accessible predictors, which are based on machine learning methods. The ensemble of such artificial intelligence algorithms, involving support vector machine (SVM), random forest (RF) classifiers, and neural networks (NN), enables the nanoengineering of a broad range of innovative peptide materials for therapeutic delivery in various applications. Amphiphilic cell-penetrating peptides (CPP), derived from natural protein sequences, may spontaneously form self-assembled nanocarriers characterized by enhanced cellular uptake. Thanks to their inherent low immunogenicity, they may enable the safe delivery of therapeutic molecules across the biological barriers.
- MeSH
- léčivé přípravky * MeSH
- lidé MeSH
- penetrační peptidy * MeSH
- proteiny MeSH
- sekvence aminokyselin MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- léčivé přípravky * MeSH
- penetrační peptidy * MeSH
- proteiny MeSH