Nejvíce citovaný článek - PubMed ID 10490031
Bordetella pertussis infects human upper airways and deploys an array of immunosuppressive virulence factors, among which the adenylate cyclase toxin (CyaA) plays a prominent role in disarming host phagocytes. CyaA binds the complement receptor-3 (CR3 aka αMβ2 integrin CD11b/CD18 or Mac-1) of myeloid cells and delivers into their cytosol an adenylyl cyclase enzyme that hijacks cellular signaling through unregulated conversion of cytosolic ATP to cAMP. We found that the action of as little CyaA as 22 pM (4 ng/mL) blocks macrophage colony-stimulating factor (M-CSF)-driven transition of migratory human CD14+ monocytes into macrophages. Global transcriptional profiling (RNAseq) revealed that exposure of monocytes to 22 pM CyaA for 40 hours in culture with 20 ng/mL of M-CSF led to upregulation of genes that exert negative control of monocyte to macrophage differentiation (e.g., SERPINB2, DLL1, and CSNK1E). The sustained CyaA action yielded downregulation of numerous genes involved in processes crucial for host defense, such as myeloid cell differentiation, chemotaxis of inflammatory cells, antigen presentation, phagocytosis, and bactericidal activities. CyaA-elicited signaling also promoted deacetylation and trimethylation of lysines 9 and 27 of histone 3 (H3K9me3 and H3K27me3) and triggered the formation of transcriptionally repressive heterochromatin patches in the nuclei of CyaA-exposed monocytes. These effects were partly reversed by the G9a methyltransferase inhibitor UNC 0631 and by the pleiotropic HDAC inhibitor Trichostatin-A, revealing that CyaA-elicited epigenetic alterations mediate transcriptional reprogramming of monocytes and play a role in CyaA-triggered block of monocyte differentiation into bactericidal macrophage cells.IMPORTANCETo proliferate on host airway mucosa and evade elimination by patrolling sentinel cells, the whooping cough agent Bordetella pertussis produces a potently immunosubversive adenylate cyclase toxin (CyaA) that blocks opsonophagocytic killing of bacteria by phagocytes like neutrophils and macrophages. Indeed, chemotactic migration of CD14+ monocytes to the infection site and their transition into bactericidal macrophages, thus replenishing the exhausted mucosa-patrolling macrophages, represents one of the key mechanisms of innate immune defense to infection. We show that the cAMP signaling action of CyaA already at a very low toxin concentration triggers massive transcriptional reprogramming of monocytes that is accompanied by chromatin remodeling and epigenetic histone modifications, which block the transition of migratory monocytes into bactericidal macrophage cells. This reveals a novel layer of toxin action-mediated hijacking of functional differentiation of innate immune cells for the sake of mucosal pathogen proliferation and transmission to new hosts.
- Klíčová slova
- Bordetella pertussis, RTX toxins, cyclic AMP, differentiation, epigenetics, macrophages, monocytes,
- MeSH
- adenylátcyklasový toxin * metabolismus MeSH
- Bordetella pertussis * patogenita enzymologie MeSH
- buněčná diferenciace * účinky léků MeSH
- faktor stimulující kolonie makrofágů MeSH
- kultivované buňky MeSH
- lidé MeSH
- makrofágy * účinky léků cytologie MeSH
- monocyty * účinky léků cytologie fyziologie MeSH
- přeprogramování buněk * MeSH
- restrukturace chromatinu * účinky léků MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylátcyklasový toxin * MeSH
- faktor stimulující kolonie makrofágů MeSH
A high degree of developmental plasticity enables plants to adapt to continuous, often unfavorable and unpredictable changes in their environment. At the molecular level, adaptive advantages for plants are primarily provided by epigenetic machinery including DNA methylation, histone modifications, and the activity of noncoding RNA molecules. Using a mass spectrometry-based proteomic approach, we examined the levels of acetylated histone peptide forms in Arabidopsis plants with a loss of function of histone deacetylase 6 (HDA6), and in plants germinated in the presence of HDA inhibitors trichostatin A (TSA) and sodium butyrate (NaB). Our analyses revealed particular lysine sites at histone sequences targeted by the HDA6 enzyme, and by TSA- and NaB-sensitive HDAs. Compared with plants exposed to drugs, more dramatic changes in the overall profiles of histone post-translational modifications were identified in hda6 mutants. However, loss of HDA6 was not sufficient by itself to induce hyperacetylation to the maximum degree, implying complementary activities of other HDAs. In contrast to hda6 mutants that did not exhibit any obvious phenotypic defects, the phenotypes of seedlings exposed to HDA inhibitors were markedly affected, showing that the effect of these drugs on early plant development is not limited to the modulation of histone acetylation levels.
- Klíčová slova
- Arabidopsis thaliana, epigenetics, histone, mass spectrometry, post-translational modifications, sodium butyrate, trichostatin A,
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- histondeacetylasy genetika MeSH
- histonový kód účinky léků genetika MeSH
- inhibitory histondeacetylas farmakologie MeSH
- klíčení genetika MeSH
- kyselina máselná farmakologie MeSH
- kyseliny hydroxamové farmakologie MeSH
- metylace DNA účinky léků MeSH
- proteiny huseníčku antagonisté a inhibitory genetika MeSH
- proteomika * MeSH
- regulace genové exprese u rostlin MeSH
- semenáček účinky léků genetika MeSH
- umlčování genů MeSH
- vývoj rostlin účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AT5G63110 protein, Arabidopsis MeSH Prohlížeč
- histondeacetylasy MeSH
- inhibitory histondeacetylas MeSH
- kyselina máselná MeSH
- kyseliny hydroxamové MeSH
- proteiny huseníčku MeSH
- trichostatin A MeSH Prohlížeč
Auxin is an important regulator of plant ontogenies including embryo development and the exogenous application of this phytohormone has been found to be necessary for the induction of the embryogenic response in plant explants that have been cultured in vitro. However, in the present study, we show that treatment of Arabidopsis explants with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces somatic embryogenesis (SE) without the exogenous application of auxin. We found that the TSA-treated explants generated somatic embryos that developed efficiently on the adaxial side of the cotyledons, which are the parts of an explant that are involved in auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC) was observed in the TSA-treated explants, thus confirming a histone acetylation-related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the embryogenic effect of TSA was lower on the auxin-supplemented media and this finding further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we found a significantly increased content of indolic compounds, which is indicative of IAA and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results, two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis, were found to be distinctly up-regulated during TSA-induced SE and their expression was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were extensively accumulated in response to TSA, thereby indicating that a stress-response is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the transcription factors (TFs) that have a regulatory function in auxin biosynthesis including LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the TSA-treated explants. Collectively, the results provide several pieces of evidence about the similarities between the molecular pathways of SE induction that are triggered by TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have a regulatory function in auxin biosynthesis and stress responses. The study suggests the involvement of histone acetylation in the auxin-mediated release of the embryogenic program of development in the somatic cells of Arabidopsis.
- Klíčová slova
- Arabidopsis thaliana, auxin, epigenetics, histone acetylation, in vitro culture, somatic embryogenesis, transcription factors, trichostatin A,
- Publikační typ
- časopisecké články MeSH
Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.
- Klíčová slova
- anti-angiogenic effect, apoptosis, autophagy, cancer, cell cycle arrest, drug combinations, histone deacetylase inhibitors, histone deacetylases,
- MeSH
- acetylace účinky léků MeSH
- apoptóza účinky léků MeSH
- autofagie účinky léků MeSH
- epigeneze genetická účinky léků MeSH
- imunomodulace účinky léků MeSH
- inhibitory angiogeneze farmakologie terapeutické užití MeSH
- inhibitory histondeacetylas farmakologie terapeutické užití MeSH
- klinické zkoušky jako téma MeSH
- kontrolní body buněčného cyklu účinky léků MeSH
- lidé MeSH
- preklinické hodnocení léčiv MeSH
- protinádorové látky farmakologie terapeutické užití MeSH
- protokoly protinádorové kombinované chemoterapie škodlivé účinky terapeutické užití MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- inhibitory angiogeneze MeSH
- inhibitory histondeacetylas MeSH
- protinádorové látky MeSH