Most cited article - PubMed ID 10802240
A new member of the AKH/RPCH family that stimulates locomotory activity in the firebug, Pyrrhocoris apterus (Heteroptera)
Bees originally developed their stinging apparatus and venom against members of their own species from other hives or against predatory insects. Nevertheless, the biological and biochemical response of arthropods to bee venom is not well studied. Thus, in this study, the physiological responses of a model insect species (American cockroach, Periplaneta americana) to honeybee venom were investigated. Bee venom toxins elicited severe stress (LD50 = 1.063 uL venom) resulting in a significant increase in adipokinetic hormones (AKHs) in the cockroach central nervous system and haemolymph. Venom treatment induced a large destruction of muscle cell ultrastructure, especially myofibrils and sarcomeres. Interestingly, co-application of venom with cockroach Peram-CAH-II AKH eliminated this effect. Envenomation modulated the levels of carbohydrates, lipids, and proteins in the haemolymph and the activity of digestive amylases, lipases, and proteases in the midgut. Bee venom significantly reduced vitellogenin levels in females. Dopamine and glutathione (GSH and GSSG) insignificantly increased after venom treatment. However, dopamine levels significantly increased after Peram-CAH-II application and after co-application with bee venom, while GSH and GSSG levels immediately increased after co-application. The results suggest a general reaction of the cockroach body to bee venom and at least a partial involvement of AKHs.
- Keywords
- American cockroach, adipokinetic hormone, dopamine, honey bee, melittin, metabolism, muscle ultrastructure, vitellogenin,
- MeSH
- Central Nervous System chemistry drug effects MeSH
- Hemolymph chemistry drug effects MeSH
- Insect Hormones pharmacology MeSH
- Pyrrolidonecarboxylic Acid analogs & derivatives pharmacology MeSH
- Oligopeptides pharmacology MeSH
- Periplaneta chemistry drug effects immunology MeSH
- Immunity, Innate * MeSH
- Bee Venoms adverse effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- adipokinetic hormone MeSH Browser
- Insect Hormones MeSH
- Pyrrolidonecarboxylic Acid MeSH
- Oligopeptides MeSH
- Bee Venoms MeSH
Insect adipokinetic hormones (AKHs) are neuropeptides with a wide range of actions, including the control of insect energy metabolism. These hormones are also known to be involved in the insect defence system against toxins and pathogens. In this study, our aim was to demonstrate whether the application of external AKHs significantly enhances the efficacy of the entomopathogenic fungus Isaria fumosorosea in a model species (firebug Pyrrhocoris apterus) and pest species (Egyptian cotton leafworm Spodoptera littoralis and pea aphid Acyrthosiphon pisum). It was found that the co-application of Isaria with AKHs significantly enhanced insect mortality in comparison to the application of Isaria alone. The mode of action probably involves an increase in metabolism that is caused by AKHs (evidenced by the production of carbon dioxide), which accelerates the turnover of Isaria toxins produced into the infected insects. However, several species-specific differences probably exist. Intoxication by Isaria elicited the stimulation of Akh gene expression and synthesis of AKHs. Therefore, all interactions between Isaria and AKH actions as well as their impact on insect physiology from a theoretical and practical point of view need to be discussed further.
- Keywords
- AKH, carbon dioxide production, entomopathogen, insect pest, metabolism, mortality,
- Publication type
- Journal Article MeSH
EFLamide (EFLa) is a neuropeptide known for a long time from crustaceans, chelicerates and myriapods. Recently, EFLa-encoding genes were identified in the genomes of apterygote hexapods including basal insect species. In pterygote insects, however, evidence of EFLa was limited to partial sequences in the bed bug (Cimex), migratory locust and a few phasmid species. Here we present identification of a full length EFLa-encoding transcript in the linden bug, Pyrrhocoris apterus (Heteroptera). We created complete null mutants allowing unambiguous anatomical location of this peptide in the central nervous system. Only 2-3 EFLa-expressing cells are located very close to each other near to the surface of the lateral protocerebrum with dense neuronal arborization. Homozygous null EFLa mutants are fully viable and do not have any visible defect in development, reproduction, lifespan, diapause induction or circadian rhythmicity. Phylogenetic analysis revealed that EFLa-encoding transcripts are produced by alternative splicing of a gene that also produces Prohormone-4. However, this Proh-4/EFLa connection is found only in Hemiptera and Locusta, whereas EFLa-encoding transcripts in apterygote hexapods, chelicerates and crustaceans are clearly distinct from Proh-4 genes. The exact mechanism leading to the fused Proh-4/EFLa transcript is not yet determined, and might be a result of canonical cis-splicing, cis-splicing of adjacent genes (cis-SAG), or trans-splicing.
- Keywords
- Alternative splicing, CRISPR/Cas9, EFLamide, In silico peptide prediction, Null mutant, TRH,
- MeSH
- Phylogeny MeSH
- Heteroptera genetics metabolism MeSH
- Insect Proteins chemistry genetics metabolism MeSH
- Thyrotropin-Releasing Hormone genetics metabolism MeSH
- Neuropeptides chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Thyrotropin-Releasing Hormone MeSH
- Neuropeptides MeSH
Bumble bees are important pollinators broadly used by farmers in greenhouses and under conditions in which honeybee pollination is limited. As such, bumble bees are increasingly being reared for commercial purposes, which brings into question whether individuals reared under laboratory conditions are fully capable of physiological adaptation to field conditions. To understand the changes in bumble bee organism caused by foraging, we compared the fundamental physiological and immunological parameters of Bombus terrestris workers reared under constant optimal laboratory conditions with workers from sister colonies that were allowed to forage for two weeks in the field. Nutritional status and immune response were further determined in wild foragers of B. terrestris that lived under the constant influence of natural stressors. Both wild and laboratory-reared workers subjected to the field conditions had a lower protein concentration in the hemolymph and increased antimicrobial activity, the detection of which was limited in the non-foragers. However, in most of the tested parameters, specifically the level of carbohydrates, antioxidants, total hemocyte concentration in the hemolymph and melanization response, we did not observe any significant differences between bumble bee workers produced in the laboratory and wild animals, nor between foragers and non-foragers. Our results show that bumble bees reared under laboratory conditions can mount a sufficient immune response to potential pathogens and cope with differential food availability in the field, similarly to the wild bumble bee workers.
- Keywords
- bumble bee, foraging, immunity, laboratory rearing, nutrients, physiology,
- Publication type
- Journal Article MeSH
It has been known for many years that in temperate climates the European honey bee, Apis mellifera, exists in the form of two distinct populations within the year, short-living summer bees and long-living winter bees. However, there is only limited knowledge about the basic biochemical markers of winter and summer populations as yet. Nevertheless, the distinction between these two kinds of bees is becoming increasingly important as it can help beekeepers to estimate proportion of long-living bees in hives and therefore in part predict success of overwintering. To identify markers of winter generations, we employed the continuous long-term monitoring of a single honey bee colony for almost two years, which included measurements of physiological and immunological parameters. The results showed that the total concentration of proteins, the level of vitellogenin, and the antibacterial activity of haemolymph are the best three of all followed parameters that are related to honey bee longevity and can therefore be used as its markers.
- Keywords
- honey bee, immunity, longevity, physiology, seasonal changes,
- Publication type
- Journal Article MeSH
Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.
- Keywords
- AKH gene, FoxO, adipokinetic hormones (AKH), anti-oxidative mechanisms, free radicals, insect endocrine system, insecticide, oxidative stress, signaling pathway,
- MeSH
- Insecta metabolism MeSH
- Insect Hormones metabolism MeSH
- Pyrrolidonecarboxylic Acid analogs & derivatives metabolism MeSH
- Oligopeptides metabolism MeSH
- Oxidative Stress * MeSH
- Signal Transduction MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- adipokinetic hormone MeSH Browser
- Insect Hormones MeSH
- Pyrrolidonecarboxylic Acid MeSH
- Oligopeptides MeSH
Circadian rhythms are found in almost all organisms from cyanobacteria to humans, where most behavioral and physiological processes occur over a period of approximately 24 h in tandem with the day/night cycles. In general, these rhythmic processes are under regulation of circadian clocks. The role of circadian clocks in regulating metabolism and consequently cellular and metabolic homeostasis is an intensively investigated area of research. However, the links between circadian clocks and aging are correlative and only recently being investigated. A physiological decline in most processes is associated with advancing age, and occurs at the onset of maturity and in some instances is the result of accumulation of cellular damage beyond a critical level. A fully functional circadian clock would be vital to timing events in general metabolism, thus contributing to metabolic health and to ensure an increased "health-span" during the process of aging. Here, we present recent evidence of links between clocks, cellular metabolism, aging and oxidative stress (one of the causative factors of aging). In the light of these data, we arrive at conceptual generalizations of this relationship across the spectrum of model organisms from fruit flies to mammals.
- Publication type
- Journal Article MeSH
The differences in the metabolism and endocrine control of reserve mobilization in long-winged (macropterous) and short-winged (brachypterous) males of a flightless firebug (Pyrrhocoris apterus) were studied. We found that protein content in the gut was significantly lower in 5-10 day-old macropterous males due to their fasting and higher in 28 day-old ones than in the same aged brachypterous counterparts as the result of renewed food intake. Overall protease activity was significantly lower in 10-14 day-old macropters, while an abrupt increase in the activity starting on day 21 after adult ecdysis was also associated with renewal of the food intake. The levels of carbohydrates in haemolymph were only slightly lower in 1-10 day-old macropterous males than in the same aged brachypters. However, more than twofold higher lipid content in haemolymph of 7-10 day-old macropterous males than in the same aged brachypterous males was found. Higher mobilization of lipid reserves from the fat bodies in macropterous males was accompanied by more intensive adipokinetic response and higher levels of adipokinetic hormone in the body. It is the first report of endocrine regulation of wing morph-related differences in the lipid mobilization in males of wing-polymorphic insects.
- MeSH
- Central Nervous System chemistry MeSH
- Energy Metabolism MeSH
- Glycogen metabolism MeSH
- Hemolymph chemistry MeSH
- Heteroptera anatomy & histology genetics metabolism MeSH
- Insect Hormones metabolism MeSH
- Wings, Animal abnormalities anatomy & histology MeSH
- Pyrrolidonecarboxylic Acid analogs & derivatives metabolism MeSH
- Lipid Metabolism MeSH
- Lipid Mobilization physiology MeSH
- Oligopeptides metabolism MeSH
- Eating MeSH
- Peptide Hydrolases metabolism MeSH
- Proteins metabolism MeSH
- Intestines anatomy & histology MeSH
- Intestinal Mucosa metabolism MeSH
- Fat Body metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- adipokinetic hormone MeSH Browser
- Glycogen MeSH
- Insect Hormones MeSH
- Pyrrolidonecarboxylic Acid MeSH
- Oligopeptides MeSH
- Peptide Hydrolases MeSH
- Proteins MeSH