Nejvíce citovaný článek - PubMed ID 11483280
DNA vaccination against v-src oncogene-induced tumours in congenic chickens
BACKGROUND: Virus-induced cellular genetic modifications result in the development of many human cancers. METHODS: In our experiments, we used the RVP3 cell line, which produce primary mouse virus-induced sarcoma in 100% of cases. Inbreed 4-week-old female C57BL/6 mice were injected subcutaneously in the interscapular region with RVP3 cells. Three groups of mice were used. For treatment, one and/or two intravenous injections of a complex of small non-coding RNAs (sncRNAs) a-miR-155, piR-30074, and miR-125b with a 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC) delivery system were used. The first group consisted of untreated animals (control). The second group was treated with one injection of complex DDMC/sncRNAs (1st group). The third group was treated with two injections of complex DDMC/sncRNAs (2nd group). The tumors were removed aseptically, freed of necrotic material, and used with spleen and lungs for subsequent RT-PCR and immunofluorescence experiments, or stained with Leishman-Romanowski dye. RESULTS: As a result, the mice fully recovered from virus-induced sarcoma after two treatments with a complex including the DDMC vector and a-miR-155, piR-30074, and miR-125b. In vitro studies showed genetic and morphological transformations of murine cancer cells after the injections. CONCLUSIONS: Treatment of virus-induced sarcoma of mice with a-miR-155, piR-30074, and miR-125b as active component of anti-cancer complex and DDMC vector as delivery system due to epigenetic-regulated transformation of cancer cells into cells with non-cancerous physiology and morphology and full recovery of disease.
- Klíčová slova
- DDMC vector, Epigenetic therapy, Mice, Sarcoma, Small non-coding RNAs, Src tyrosine kinase,
- Publikační typ
- časopisecké články MeSH
Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.
- MeSH
- antigeny virové imunologie MeSH
- buněčná imunita imunologie MeSH
- CD antigeny imunologie MeSH
- cytokiny fyziologie MeSH
- dendritické buňky imunologie virologie MeSH
- kur domácí imunologie virologie MeSH
- lektiny typu C imunologie MeSH
- protilátky bispecifické imunologie MeSH
- ptačí sarkom imunologie prevence a kontrola MeSH
- receptory buněčného povrchu imunologie MeSH
- vedlejší histokompatibilní antigeny imunologie MeSH
- virové vakcíny imunologie MeSH
- virus Rousova sarkomu imunologie MeSH
- zvířata kongenní imunologie virologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny virové MeSH
- CD antigeny MeSH
- cytokiny MeSH
- DEC-205 receptor MeSH Prohlížeč
- lektiny typu C MeSH
- protilátky bispecifické MeSH
- receptory buněčného povrchu MeSH
- vedlejší histokompatibilní antigeny MeSH
- virové vakcíny MeSH
BACKGROUND: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8β+ effector cells that expressed TCRγδ, vβ1 and vβ2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.
- MeSH
- apoptóza MeSH
- autoimunitní nemoci prevence a kontrola MeSH
- Chagasova kardiomyopatie prevence a kontrola MeSH
- Chagasova nemoc terapie MeSH
- imunizace MeSH
- kinetoplastová DNA genetika MeSH
- kur domácí genetika MeSH
- mutace MeSH
- myokard patologie MeSH
- rejekce štěpu MeSH
- transplantace kostní dřeně * MeSH
- Trypanosoma cruzi genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kinetoplastová DNA MeSH
Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na(+)/H(+) exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J.
- MeSH
- internalizace viru * MeSH
- mutační analýza DNA MeSH
- Na(+)-H(+) antiport genetika metabolismus MeSH
- ptáci MeSH
- tropismus virů * MeSH
- tryptofan genetika metabolismus MeSH
- virové receptory genetika metabolismus MeSH
- virus ptačí leukózy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Na(+)-H(+) antiport MeSH
- tryptofan MeSH
- virové receptory MeSH
The avian sarcoma and leukosis virus (ASLV) family of retroviruses contains five highly related envelope subgroups (A to E) thought to have evolved from a common viral ancestor in the chicken population. Three genetic loci in chickens determine the susceptibility or resistance of cells to infection by the subgroup A to E ASLVs. Some inbred lines of chickens display phenotypes that are somewhere in between either efficiently susceptible or resistant to infection by specific subgroups of ASLV. The tvb gene encodes the receptor for subgroups B, D, and E ASLVs. The wild-type Tvb(S1) receptor confers susceptibility to subgroups B, D, and E ASLVs. In this study, the genetic defect that accounts for the altered susceptibility of an inbred chicken line, line M, to infection by ASLV(B), ASLV(D), and ASLV(E) was identified. The tvb gene in line M, tvb(r2), encodes a mutant Tvb(S1) receptor protein with a substitution of a serine for a cysteine at position 125 (C125S). Here, we show that the C125S substitution in Tvb(S1) significantly reduces the susceptibility of line M cells to infection by ASLV(B) and ASLV(D) and virtually eliminates susceptibility to ASLV(E) infection both in cultured cells and in the incidence and growth of avian sarcoma virus-induced sarcomas in chickens. The C125S substitution significantly reduces the binding affinity of the Tvb(S1) receptor for the subgroup B, D, and E ASLV envelope glycoproteins. These are the first results that demonstrate a possible role of the cysteine-rich domain 3 in the function of the Tvb receptors.
- MeSH
- alely MeSH
- Alpharetrovirus klasifikace patogenita MeSH
- DNA primery MeSH
- druhová specificita MeSH
- fúze membrán MeSH
- genetická predispozice k nemoci * MeSH
- infekce onkogenními viry virologie MeSH
- kultivované buňky MeSH
- kuřecí embryo MeSH
- molekulární sekvence - údaje MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- průtoková cytometrie MeSH
- retrovirové infekce virologie MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- substituce aminokyselin * MeSH
- virové receptory chemie genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA primery MeSH
- virové receptory MeSH
We have examined the chicken TP53 tumor suppressor gene in v-src-transformed chicken tumor cells by reverse transcriptase-polymerase chain reaction and deoxyribonucleic acid (DNA) sequencing. Initially, we have detected frequent deletions of variable length in both DNA-binding and oligomerization domains of the TP53 in late as well as early in vitro passages of the chicken tumor cell line PR9692. This tumor cell line shows an immortal phenotype and acquires a metastatic potential that is unique in our experimental model of v-src-induced tumors in congenic chickens. Deletions in TP53 were also detected in an early passage of parallel in vivo subculture of the original v-src-induced tumor. In this case, tumor cells underwent replicative senescence later in tissue culture. Our results suggest that extensive deletions are efficient mechanisms of TP53 inactivation, occurring as early events during the immortalization of v-src-transformed chicken cells. Tumor cells with altered TP53 might, however, still be susceptible to growth control mechanisms, leading to withdrawal from the mitotic cycle in the early stage of the tumor lifeline.
- MeSH
- geny p53 * MeSH
- geny src * MeSH
- kur domácí genetika MeSH
- metastázy nádorů MeSH
- molekulární sekvence - údaje MeSH
- nádorová transformace buněk * MeSH
- nádorové buněčné linie MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- transformované buněčné linie MeSH
- umlčování genů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH