Most cited article - PubMed ID 11483280
DNA vaccination against v-src oncogene-induced tumours in congenic chickens
BACKGROUND: Virus-induced cellular genetic modifications result in the development of many human cancers. METHODS: In our experiments, we used the RVP3 cell line, which produce primary mouse virus-induced sarcoma in 100% of cases. Inbreed 4-week-old female C57BL/6 mice were injected subcutaneously in the interscapular region with RVP3 cells. Three groups of mice were used. For treatment, one and/or two intravenous injections of a complex of small non-coding RNAs (sncRNAs) a-miR-155, piR-30074, and miR-125b with a 2-diethylaminoethyl-dextran methyl methacrylate copolymer (DDMC) delivery system were used. The first group consisted of untreated animals (control). The second group was treated with one injection of complex DDMC/sncRNAs (1st group). The third group was treated with two injections of complex DDMC/sncRNAs (2nd group). The tumors were removed aseptically, freed of necrotic material, and used with spleen and lungs for subsequent RT-PCR and immunofluorescence experiments, or stained with Leishman-Romanowski dye. RESULTS: As a result, the mice fully recovered from virus-induced sarcoma after two treatments with a complex including the DDMC vector and a-miR-155, piR-30074, and miR-125b. In vitro studies showed genetic and morphological transformations of murine cancer cells after the injections. CONCLUSIONS: Treatment of virus-induced sarcoma of mice with a-miR-155, piR-30074, and miR-125b as active component of anti-cancer complex and DDMC vector as delivery system due to epigenetic-regulated transformation of cancer cells into cells with non-cancerous physiology and morphology and full recovery of disease.
- Keywords
- DDMC vector, Epigenetic therapy, Mice, Sarcoma, Small non-coding RNAs, Src tyrosine kinase,
- Publication type
- Journal Article MeSH
Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.
- MeSH
- Antigens, Viral immunology MeSH
- Immunity, Cellular immunology MeSH
- Antigens, CD immunology MeSH
- Cytokines physiology MeSH
- Dendritic Cells immunology virology MeSH
- Chickens immunology virology MeSH
- Lectins, C-Type immunology MeSH
- Antibodies, Bispecific immunology MeSH
- Sarcoma, Avian immunology prevention & control MeSH
- Receptors, Cell Surface immunology MeSH
- Minor Histocompatibility Antigens immunology MeSH
- Viral Vaccines immunology MeSH
- Rous sarcoma virus immunology MeSH
- Animals, Congenic immunology virology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Viral MeSH
- Antigens, CD MeSH
- Cytokines MeSH
- DEC-205 receptor MeSH Browser
- Lectins, C-Type MeSH
- Antibodies, Bispecific MeSH
- Receptors, Cell Surface MeSH
- Minor Histocompatibility Antigens MeSH
- Viral Vaccines MeSH
BACKGROUND: Infection with the protozoan Trypanosoma cruzi manifests in mammals as Chagas heart disease. The treatment available for chagasic cardiomyopathy is unsatisfactory. METHODS/PRINCIPAL FINDINGS: To study the disease pathology and its inhibition, we employed a syngeneic chicken model refractory to T. cruzi in which chickens hatched from T. cruzi inoculated eggs retained parasite kDNA (1.4 kb) minicircles. Southern blotting with EcoRI genomic DNA digests revealed main 18 and 20 kb bands by hybridization with a radiolabeled minicircle sequence. Breeding these chickens generated kDNA-mutated F1, F2, and F3 progeny. A targeted-primer TAIL-PCR (tpTAIL-PCR) technique was employed to detect the kDNA integrations. Histocompatible reporter heart grafts were used to detect ongoing inflammatory cardiomyopathy in kDNA-mutated chickens. Fluorochromes were used to label bone marrow CD3+, CD28+, and CD45+ precursors of the thymus-dependent CD8α+ and CD8β+ effector cells that expressed TCRγδ, vβ1 and vβ2 receptors, which infiltrated the adult hearts and the reporter heart grafts. CONCLUSIONS/SIGNIFICANCE: Genome modifications in kDNA-mutated chickens can be associated with disruption of immune tolerance to compatible heart grafts and with rejection of the adult host's heart and reporter graft, as well as tissue destruction by effector lymphocytes. Autoimmune heart rejection was largely observed in chickens with kDNA mutations in retrotransposons and in coding genes with roles in cell structure, metabolism, growth, and differentiation. Moreover, killing the sick kDNA-mutated bone marrow cells with cytostatic and anti-folate drugs and transplanting healthy marrow cells inhibited heart rejection. We report here for the first time that healthy bone marrow cells inhibited heart pathology in kDNA+ chickens and thus prevented the genetically driven clinical manifestations of the disease.
- MeSH
- Apoptosis MeSH
- Autoimmune Diseases prevention & control MeSH
- Chagas Cardiomyopathy prevention & control MeSH
- Chagas Disease therapy MeSH
- Immunization MeSH
- DNA, Kinetoplast genetics MeSH
- Chickens genetics MeSH
- Mutation MeSH
- Myocardium pathology MeSH
- Graft Rejection MeSH
- Bone Marrow Transplantation * MeSH
- Trypanosoma cruzi genetics immunology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA, Kinetoplast MeSH
Subgroup J avian leukosis virus (ALV-J) is unique among the avian sarcoma and leukosis viruses in using the multimembrane-spanning cell surface protein Na(+)/H(+) exchanger type 1 (NHE1) as a receptor. The precise localization of amino acids critical for NHE1 receptor activity is key in understanding the virus-receptor interaction and potential interference with virus entry. Because no resistant chicken lines have been described until now, we compared the NHE1 amino acid sequences from permissive and resistant galliform species. In all resistant species, the deletion or substitution of W38 within the first extracellular loop was observed either alone or in the presence of other incidental amino acid changes. Using the ectopic expression of wild-type or mutated chicken NHE1 in resistant cells and infection with a reporter recombinant retrovirus of subgroup J specificity, we studied the effect of individual mutations on the NHE1 receptor capacity. We suggest that the absence of W38 abrogates binding of the subgroup J envelope glycoprotein to ALV-J-resistant cells. Altogether, we describe the functional importance of W38 for virus entry and conclude that natural polymorphisms in NHE1 can be a source of host resistance to ALV-J.
- MeSH
- Virus Internalization * MeSH
- DNA Mutational Analysis MeSH
- Sodium-Hydrogen Exchangers genetics metabolism MeSH
- Birds MeSH
- Viral Tropism * MeSH
- Tryptophan genetics metabolism MeSH
- Receptors, Virus genetics metabolism MeSH
- Avian Leukosis Virus physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Sodium-Hydrogen Exchangers MeSH
- Tryptophan MeSH
- Receptors, Virus MeSH
The avian sarcoma and leukosis virus (ASLV) family of retroviruses contains five highly related envelope subgroups (A to E) thought to have evolved from a common viral ancestor in the chicken population. Three genetic loci in chickens determine the susceptibility or resistance of cells to infection by the subgroup A to E ASLVs. Some inbred lines of chickens display phenotypes that are somewhere in between either efficiently susceptible or resistant to infection by specific subgroups of ASLV. The tvb gene encodes the receptor for subgroups B, D, and E ASLVs. The wild-type Tvb(S1) receptor confers susceptibility to subgroups B, D, and E ASLVs. In this study, the genetic defect that accounts for the altered susceptibility of an inbred chicken line, line M, to infection by ASLV(B), ASLV(D), and ASLV(E) was identified. The tvb gene in line M, tvb(r2), encodes a mutant Tvb(S1) receptor protein with a substitution of a serine for a cysteine at position 125 (C125S). Here, we show that the C125S substitution in Tvb(S1) significantly reduces the susceptibility of line M cells to infection by ASLV(B) and ASLV(D) and virtually eliminates susceptibility to ASLV(E) infection both in cultured cells and in the incidence and growth of avian sarcoma virus-induced sarcomas in chickens. The C125S substitution significantly reduces the binding affinity of the Tvb(S1) receptor for the subgroup B, D, and E ASLV envelope glycoproteins. These are the first results that demonstrate a possible role of the cysteine-rich domain 3 in the function of the Tvb receptors.
- MeSH
- Alleles MeSH
- Alpharetrovirus classification pathogenicity MeSH
- DNA Primers MeSH
- Species Specificity MeSH
- Membrane Fusion MeSH
- Genetic Predisposition to Disease * MeSH
- Tumor Virus Infections virology MeSH
- Cells, Cultured MeSH
- Chick Embryo MeSH
- Molecular Sequence Data MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Flow Cytometry MeSH
- Retroviridae Infections virology MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Amino Acid Substitution * MeSH
- Receptors, Virus chemistry genetics physiology MeSH
- Animals MeSH
- Check Tag
- Chick Embryo MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA Primers MeSH
- Receptors, Virus MeSH
We have examined the chicken TP53 tumor suppressor gene in v-src-transformed chicken tumor cells by reverse transcriptase-polymerase chain reaction and deoxyribonucleic acid (DNA) sequencing. Initially, we have detected frequent deletions of variable length in both DNA-binding and oligomerization domains of the TP53 in late as well as early in vitro passages of the chicken tumor cell line PR9692. This tumor cell line shows an immortal phenotype and acquires a metastatic potential that is unique in our experimental model of v-src-induced tumors in congenic chickens. Deletions in TP53 were also detected in an early passage of parallel in vivo subculture of the original v-src-induced tumor. In this case, tumor cells underwent replicative senescence later in tissue culture. Our results suggest that extensive deletions are efficient mechanisms of TP53 inactivation, occurring as early events during the immortalization of v-src-transformed chicken cells. Tumor cells with altered TP53 might, however, still be susceptible to growth control mechanisms, leading to withdrawal from the mitotic cycle in the early stage of the tumor lifeline.
- MeSH
- Genes, p53 * MeSH
- Genes, src * MeSH
- Chickens genetics MeSH
- Neoplasm Metastasis MeSH
- Molecular Sequence Data MeSH
- Cell Transformation, Neoplastic * MeSH
- Cell Line, Tumor MeSH
- Base Sequence MeSH
- Sequence Alignment MeSH
- Cell Line, Transformed MeSH
- Gene Silencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH