Nejvíce citovaný článek - PubMed ID 11857068
Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.
- Klíčová slova
- CRISPR, DNA-free genome editing, base editing, crop improvement, genome editing, prime editing,
- MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- genom rostlinný MeSH
- šlechtění rostlin metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Nanoparticles have become popular in life sciences in the last few years. They have been produced in many variants and have recently been used in both biological experiments and in clinical applications. Due to concerns over nanomaterial risks, there has been a dramatic increase in investigations focused on safety research. The aim of this paper is to present the advanced testing of rhodamine-derived superparamagnetic maghemite nanoparticles (SAMN-R), which are used for their nontoxicity, biocompatibility, biodegradability, and magnetic properties. Recent results were expanded upon from the basic cytotoxic tests to evaluate cell proliferation and migration potential. Two cell types were used for the cell proliferation and tracking study: mouse embryonic fibroblast cells (3T3) and human mesenchymal stem cells (hMSCs). Advanced microscopic methods allowed for the precise quantification of the function of both cell types. This study has demonstrated that a dose of nanoparticles lower than 20 µg·cm-2 per area of the dish does not negatively affect the cells' morphology, migration, cytoskeletal function, proliferation, potential for wound healing, and single-cell migration in comparison to standard CellTracker™ Green CMFDA (5-chloromethylfluorescein diacetate). A higher dose of nanoparticles could be a potential risk for cytoskeletal folding and detachment of the cells from the solid extracellular matrix.
- Klíčová slova
- cytotoxicity, fibroblast cells, magnetic nanoparticles, mesenchymal stem cells, single-cell migration, wound healing assay,
- MeSH
- biologické markery MeSH
- buněčné linie MeSH
- fibroblasty účinky léků metabolismus MeSH
- imunofenotypizace MeSH
- lidé MeSH
- magnetické nanočástice * chemie MeSH
- mezenchymální kmenové buňky účinky léků metabolismus MeSH
- myši MeSH
- pohyb buněk účinky léků MeSH
- proliferace buněk účinky léků MeSH
- průtoková cytometrie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rhodaminy chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- magnetické nanočástice * MeSH
- reaktivní formy kyslíku MeSH
- rhodaminy MeSH
In this study, we have developed a combined approach to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, using a new nanofibrous scaffold made by needleless electrospinning from a mixture of poly-ε-caprolactone and magnetic particles. The biological characteristics of porcine MSCs were investigated while cultured in vitro on composite scaffold enriched with magnetic nanoparticles. Our data indicate that due to the synergic effect of the poly-ε-caprolactone nanofibers and magnetic particles, cellular adhesion and proliferation of MSCs is enhanced and osteogenic differentiation is supported. The cellular and physical attributes make this new scaffold very promising for the acceleration of efficient MSC proliferation and regeneration of hard tissues.
- Klíčová slova
- magnetic particles, mesenchymal stem cells, nanofibers, tissue engineering,
- MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- buněčná adheze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- kapronáty chemie farmakologie MeSH
- laktony chemie farmakologie MeSH
- magnetické nanočástice chemie MeSH
- mezenchymální kmenové buňky cytologie účinky léků MeSH
- nanovlákna chemie MeSH
- polyestery farmakologie MeSH
- prasata MeSH
- proliferace buněk účinky léků MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- caprolactone MeSH Prohlížeč
- kapronáty MeSH
- laktony MeSH
- magnetické nanočástice MeSH
- polyestery MeSH