Nejvíce citovaný článek - PubMed ID 11886872
Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella
Similar to Lepidoptera, the larvae of Trichoptera are also capable of producing silk. Plectrocnemia conspersa, a predatory species belonging to the suborder Annulipalpia, builds massive silken retreats with preycapturing nets. In this study, we describe the silk glands of P. conspersa and use the multi-omics methods to obtain a complete picture of the fiber composition. A combination of silk gland-specific transcriptome and proteomic analyses of the spun-out fibers yielded 27 significant candidates whose full-length sequences and gene structures were retrieved from the publicly available genome database. About one-third of the candidates were completely novel proteins for which there are no described homologs, including a group of five pseudofibroins, proteins with a composition similar to fibroin heavy chain. The rest were homologs of lepidopteran silk proteins, although some had a larger number of paralogs. On the other hand, P. conspersa fibers lacked some proteins that are regular components in moth silk. In summary, the multi-omics approach provides an opportunity to compare the overall composition of silk with other insect species. A sufficient number of such studies will make it possible to distinguish between the basic components of all silks and the proteins that represent the adaptation of the fibers for specific purposes or environments.
- Klíčová slova
- Trichoptera, adhesion, biomaterials, caddisfly, fibers, fibroin, mucin, zonadhesin,
- Publikační typ
- časopisecké články MeSH
Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using 'omics' technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.
- Klíčová slova
- Bena prasinana, Bombycidae, Nolidae, fibrohexamerins, phylogeny, transcriptomics,
- MeSH
- bourec klasifikace genetika metabolismus MeSH
- exokrinní žlázy metabolismus MeSH
- fibroiny chemie genetika MeSH
- fylogeneze MeSH
- molekulární evoluce * MeSH
- proteom genetika metabolismus MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fibroiny MeSH
- proteom MeSH
Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi-liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross-linking by disulfide bonds may be important in the silks spun under water. The mechanism of long-term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue-type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin beta-sheets interrupted with other structures such as alpha-helices but the silk proteins of certain sawflies have predominantly a collagen-like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement.
- MeSH
- hedvábí chemie klasifikace metabolismus MeSH
- hmyz metabolismus MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- slinné žlázy metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- hedvábí MeSH
The silk of caterpillars is secreted in the labial glands, stored as a gel in their lumen, and converted into a solid filament during spinning. Heavy chain fibroin (H-fibroin), light chain fibroin (L-fibroin), and P25 protein constitute the filament core in a few species that have been analyzed. Identification of these proteins in Yponomeuta evonymella, a moth from a family which diverged from the rest of Lepidoptera about 150 million years ago, reveals that the mode of filament construction is highly conserved. It is proposed that association of the three proteins is suited for long storage of hydrated silk dope and its rapid conversion to filament. Interactions underlying these processes depend on conserved spacing of critical amino acid residues that are dispersed through the L-fibroin and P25 and assembled in the short ends of the H-fibroin molecule. Strength, elasticity, and other physical properties of the filament are determined by simple amino acid motifs arranged in repetitive modules that build up most of the H-fibroin. H-Fibroin synergy with L-fibroin and P25 does not interfere with motif diversification by which the filament acquires new properties. Several types of motifs in complex repeats occur in the silks used for larval cobwebs and pupal cocoons. Restriction of silk use to cocoon construction in some lepidopteran families has been accompanied by simplification of H-fibroin repeats. An extreme deviation of the silk structure occurs in the Saturniidae silkmoths, which possess modified H-fibroin and lack L-fibroin and P25.
- MeSH
- aminokyselinové motivy MeSH
- čas MeSH
- druhová specificita MeSH
- fibroiny biosyntéza chemie genetika MeSH
- glykoproteiny genetika MeSH
- hedvábí biosyntéza MeSH
- hmyzí proteiny genetika MeSH
- komplementární DNA izolace a purifikace MeSH
- konzervovaná sekvence * MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- můry genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční homologie nukleových kyselin MeSH
- strukturní homologie proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fibroiny MeSH
- glykoproteiny MeSH
- hedvábí MeSH
- hmyzí proteiny MeSH
- komplementární DNA MeSH
- L-chain, fibroin protein, insect MeSH Prohlížeč
- P25 protein, Galleria mellonella MeSH Prohlížeč