Nejvíce citovaný článek - PubMed ID 12033256
Living cells are frequently exposed to aldehydes, as these compounds are produced during metabolism, found in natural dietary sources, and present as contaminants, drugs, and pollutants. For instance, acrolein is well-known as a toxic pollutant, but is also produced in the metabolism of polyamines, threonine, and polyunsaturated fatty acids. Another aldehyde, 3-aminopropanal, is a byproduct of polyamine oxidation, and its cytotoxicity has been implicated in various diseases, especially those involving oxidative stress and cellular damage. 3-Aminopropanal can readily convert to acrolein through ammonia elimination. Our objective was to compare the reactivity of these two compounds toward biomolecules. Amino acids such as cysteine and lysine, along with model peptides and proteins, were reacted with an excess of each compound. The reacted molecules were analyzed by MALDI-TOF mass spectrometry to assess the extent of modification by examining the difference in molecular mass. Modified peptides, including those obtained by enzymatic digestion of the reacted model proteins, were subjected to tandem mass spectrometry to identify modification sites and determine the structure of the modified amino acids. The most characteristic modifications were Michael addition to cysteine and Schiff base formation with lysine, consistent with known acrolein-induced protein modifications. Compared to acrolein, 3-aminopropanal exhibited substantially reduced reactivity, though it generally targeted the same sites. These results represent the first experimental characterization of 3-aminopropanal-induced protein modifications at the molecular level, and support the notion that 3-aminopropanal is converted to acrolein, which acts as the modifying agent.
- Klíčová slova
- 3‐aminopropanal, Michael adduct, Schiff base, acrolein, modification,
- MeSH
- akrolein * chemie MeSH
- cystein chemie MeSH
- lysin chemie MeSH
- peptidy * chemie MeSH
- proteiny * chemie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- akrolein * MeSH
- cystein MeSH
- lysin MeSH
- peptidy * MeSH
- proteiny * MeSH
Copper-containing diamine oxidases are ubiquitous enzymes that participate in many important biological processes. These processes include the regulation of cell growth and division, programmed cell death, and responses to environmental stressors. Natural substrates include, for example, putrescine, spermidine, and histamine. Enzymatic activity is typically assayed using spectrophotometric, electrochemical, or fluorometric methods. The aim of this study was to develop a method for measuring activity using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry based on the intensity ratio of product to product-plus-substrate signals in the reaction mixtures. For this purpose, an enzyme purified to homogeneity from pea (Pisum sativum) seedlings was used. The method employed α-cyano-4-hydroxycinnamic acid as a matrix with the addition of cetrimonium bromide. Product signal intensities with pure compounds were evaluated in the presence of equal substrate amounts to determine intensity correction factors for data processing calculations. The kinetic parameters kcat and Km for the oxidative deamination of selected substrates were determined. These results were compared to parallel measurements using an established spectrophotometric method, which involved a coupled reaction of horseradish peroxidase and guaiacol, and were discussed in the context of data from the literature and the BRENDA database. It was found that the method provides accurate results that are well comparable with parallel spectrophotometry. This method offers advantages such as low sample consumption, rapid serial measurements, and potential applicability in assays where colored substances interfere with spectrophotometry.
- Klíčová slova
- MALDI, activity assay, amine oxidase, enzyme kinetics, polyamine, reaction rate,
- MeSH
- enzymatické testy metody MeSH
- histaminasa * metabolismus chemie MeSH
- hrách setý enzymologie chemie MeSH
- kinetika MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * metody MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histaminasa * MeSH
Aldehyde dehydrogenases (ALDHs) represent a superfamily of enzymes, which oxidize aldehydes to the corresponding acids. Certain families, namely ALDH9 and ALDH10, are best active with ω-aminoaldehydes arising from the metabolism of polyamines such as 3-aminopropionaldehyde and 4-aminobutyraldehyde. Plant ALDH10s show broad specificity and accept many different aldehydes (aliphatic, aromatic and heterocyclic) as substrates. This work involved the above-mentioned aminoaldehydes acylated with dicarboxylic acids, phenylalanine, and tyrosine. The resulting products were then examined with native ALDH10 from pea and recombinant ALDH7s from pea and maize. This investigation aimed to find a common efficient substrate for the two plant ALDH families. One of the best natural substrates of ALDH7s is aminoadipic semialdehyde carrying a carboxylic group opposite the aldehyde group. The substrate properties of the new compounds were demonstrated by mass spectrometry of the reaction mixtures, spectrophotometric assays and molecular docking. The N-carboxyacyl derivatives were good substrates of pea ALDH10 but were only weakly oxidized by the two plant ALDH7s. The N-phenylalanyl and N-tyrosyl derivatives of 3-aminopropionaldehyde were good substrates of pea and maize ALDH7. Particularly the former compound was converted very efficiently (based on the kcat/Km ratio), but it was only weakly oxidized by pea ALDH10. Although no compound exhibited the same level of substrate properties for both ALDH families, we show that these enzymes may possess more common substrates than expected.
- Klíčová slova
- Acylation, Aldehyde dehydrogenase, Aminoaldehyde, Docking, Enzyme, Substrate,
- MeSH
- aldehyddehydrogenasa * metabolismus chemie genetika MeSH
- aldehydy * metabolismus chemie MeSH
- hrách setý * enzymologie MeSH
- kinetika MeSH
- kukuřice setá * enzymologie MeSH
- oxidace-redukce MeSH
- rostlinné proteiny metabolismus chemie genetika MeSH
- simulace molekulového dockingu * MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehyddehydrogenasa * MeSH
- aldehydy * MeSH
- rostlinné proteiny MeSH
Polyamines participate in the processes of cell growth and development. The degradation branch of their metabolism involves amine oxidases. The oxidation of spermine, spermidine and putrescine releases hydrogen peroxide and the corresponding aminoaldehyde. Polyamine-derived aminoaldehydes have been found to be cytotoxic, and they represent the subject of this review. 3-aminopropanal disrupts the lysosomal membrane and triggers apoptosis or necrosis in the damaged cells. It is implicated in the pathogenesis of cerebral ischemia. Furthermore, 3-aminopropanal yields acrolein through the elimination of ammonia. This reactive aldehyde is also generated by the decomposition of aminoaldehydes produced in the reaction of serum amine oxidase with spermidine or spermine. In addition, acrolein is a common environmental pollutant. It causes covalent modifications of proteins, including carbonylation, the production of Michael-type adducts and cross-linking, and it has been associated with inflammation-related diseases. APAL and acrolein are detoxified by aldehyde dehydrogenases and other mechanisms. High-performance liquid chromatography, immunochemistry and mass spectrometry have been largely used to analyze the presence of polyamine-derived aminoaldehydes and protein modifications elicited by their effect. However, the main and still open challenge is to find clues for discovering clear linkages between aldehyde-induced modifications of specific proteins and the development of various diseases.
- Klíčová slova
- 3-aminopropanal, Michael adduct, Schiff base, acrolein, aldehyde dehydrogenase, amine oxidase, aminoaldehyde, cytotoxicity, glutathione, protein modification,
- MeSH
- akrolein * farmakologie MeSH
- aldehydy farmakologie MeSH
- polyaminy * MeSH
- spermidin farmakologie MeSH
- spermin farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 3-aminopropionaldehyde MeSH Prohlížeč
- akrolein * MeSH
- aldehydy MeSH
- polyaminy * MeSH
- spermidin MeSH
- spermin MeSH
The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.
- MeSH
- cytochrom P-450 CYP1A1 genetika MeSH
- kůže * metabolismus účinky záření MeSH
- ligandy MeSH
- myši MeSH
- promotorové oblasti (genetika) MeSH
- receptory aromatických uhlovodíků - jaderný translokátor * genetika metabolismus MeSH
- receptory aromatických uhlovodíků * genetika metabolismus MeSH
- ultrafialové záření škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytochrom P-450 CYP1A1 MeSH
- ligandy MeSH
- receptory aromatických uhlovodíků - jaderný translokátor * MeSH
- receptory aromatických uhlovodíků * MeSH