Nejvíce citovaný článek - PubMed ID 12459205
Molecular cloning, expression and isolation of ferritins from two tick species--Ornithodoros moubata and Ixodes ricinus
BACKGROUND: Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease. RESULTS: Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly. Additionally, draft assemblies were generated for the three other Ixodes species, I. persulcatus, I. pacificus, and I. hexagonus. The quality of the four genomes and extensive annotation of several important gene families have allowed us to study the evolution of gene repertoires at the level of the genus Ixodes and of the tick group. We have determined gene families that have undergone major amplifications during the evolution of ticks, while an expression atlas obtained for I. ricinus reveals striking patterns of specialization both between and within gene families. Notably, several gene family amplifications are associated with a proliferation of single-exon genes-most strikingly for fatty acid elongases and sulfotransferases. CONCLUSIONS: The integration of our data with existing genomes establishes a solid framework for the study of gene evolution, improving our understanding of tick biology. In addition, our work lays the foundations for applied research and innovative control targeting these organisms.
- Klíčová slova
- Comparative genomics, Duplication, Hematophagy, Parasite, Retroposition,
- MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- genom * MeSH
- klíště * genetika klasifikace MeSH
- molekulární evoluce * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.
- Klíčová slova
- Ixodes ricinus, blood coagulation, crystal structure, parasite, saliva, serpin, tick,
- MeSH
- aktivace komplementu účinky léků imunologie fyziologie MeSH
- erytrocyty metabolismus MeSH
- exprese genu genetika MeSH
- hemokoagulace účinky léků fyziologie MeSH
- klíště enzymologie genetika metabolismus MeSH
- komplement metabolismus MeSH
- lymeská nemoc MeSH
- nymfa MeSH
- proteiny členovců metabolismus MeSH
- regulace genové exprese genetika MeSH
- serpiny metabolismus ultrastruktura MeSH
- slinné žlázy metabolismus MeSH
- sliny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplement MeSH
- proteiny členovců MeSH
- serpiny MeSH
The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.
- Klíčová slova
- Ixodes ricinus, cathepsin, crystal structure, cysteine protease, digestion, midgut, parasite,
- MeSH
- cystatiny metabolismus MeSH
- fylogeneze MeSH
- kathepsin L metabolismus MeSH
- klíšťata metabolismus MeSH
- klíště metabolismus MeSH
- krevní proteiny metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proteolýza MeSH
- sekvence aminokyselin MeSH
- trávicí systém metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystatiny MeSH
- kathepsin L MeSH
- krevní proteiny MeSH
To successfully feed, ticks inject pharmacoactive molecules into the vertebrate host including cystatin cysteine protease inhibitors. However, the molecular and cellular events modulated by tick saliva remain largely unknown. Here, we describe and characterize a novel immunomodulatory cystatin, Iristatin, which is upregulated in the salivary glands of feeding Ixodes ricinus ticks. We present the crystal structure of Iristatin at 1.76 Å resolution. Purified recombinant Iristatin inhibited the proteolytic activity of cathepsins L and C and diminished IL-2, IL-4, IL-9, and IFN-γ production by different T-cell populations, IL-6 and IL-9 production by mast cells, and nitric oxide production by macrophages. Furthermore, Iristatin inhibited OVA antigen-induced CD4+ T-cell proliferation and leukocyte recruitment in vivo and in vitro. Our results indicate that Iristatin affects wide range of anti-tick immune responses in the vertebrate host and may be exploitable as an immunotherapeutic.
- Klíčová slova
- Cathepsin, Crystal structure, Immune responses, Ixodes ricinus, Saliva,
- MeSH
- cystatiny klasifikace genetika farmakologie MeSH
- cytokiny metabolismus MeSH
- epoxidové sloučeniny metabolismus MeSH
- fylogeneze MeSH
- imunosupresiva chemie metabolismus farmakologie MeSH
- klíště chemie genetika metabolismus MeSH
- krystalografie rentgenová MeSH
- makrofágy účinky léků metabolismus MeSH
- oxid dusnatý metabolismus MeSH
- proteiny členovců chemie genetika farmakologie MeSH
- proteolýza účinky léků MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- slinné cystatiny chemie genetika farmakologie MeSH
- T-lymfocyty účinky léků metabolismus MeSH
- tyrosin analogy a deriváty metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cathestatin C MeSH Prohlížeč
- cystatiny MeSH
- cytokiny MeSH
- epoxidové sloučeniny MeSH
- imunosupresiva MeSH
- oxid dusnatý MeSH
- proteiny členovců MeSH
- slinné cystatiny MeSH
- tyrosin MeSH
Adult females of the genus Ixodes imbibe blood meals exceeding about 100 times their own weight within 7‒9 days. During this period, ticks internalise components of host blood by endocytic digest cells that line the tick midgut epithelium. Using RNA-seq, we aimed to characterise the midgut transcriptome composition in adult Ixodes ricinus females during early and late phase of engorgement. To address specific adaptations to the haemoglobin-rich diet, we compared the midgut transcriptomes of genetically homogenous female siblings fed either bovine blood or haemoglobin-depleted serum. We noted that tick gut transcriptomes are subject to substantial temporal-dependent expression changes between day 3 and day 8 of feeding. In contrast, the number of transcripts significantly affected by the presence or absence of host red blood cells was low. Transcripts relevant to the processes associated with blood-meal digestion were analysed and involvement of selected encoded proteins in the tick midgut physiology discussed. A total of 7215 novel sequences from I. ricinus were deposited in public databases as an additional outcome of this study. Our results broaden the current knowledge of tick digestive system and may lead to the discovery of potential molecular targets for efficient tick control.
- MeSH
- klíště genetika metabolismus MeSH
- sekvenční analýza RNA * MeSH
- skot MeSH
- stanovení celkové genové exprese * MeSH
- střeva patologie MeSH
- střevní sliznice metabolismus MeSH
- transkriptom fyziologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
Haem and iron homeostasis in most eukaryotic cells is based on a balanced flux between haem biosynthesis and haem oxygenase-mediated degradation. Unlike most eukaryotes, ticks possess an incomplete haem biosynthetic pathway and, together with other (non-haematophagous) mites, lack a gene encoding haem oxygenase. We demonstrated, by membrane feeding, that ticks do not acquire bioavailable iron from haemoglobin-derived haem. However, ticks require dietary haemoglobin as an exogenous source of haem since, feeding with haemoglobin-depleted serum led to aborted embryogenesis. Supplementation of serum with haemoglobin fully restored egg fertility. Surprisingly, haemoglobin could be completely substituted by serum proteins for the provision of amino-acids in vitellogenesis. Acquired haem is distributed by haemolymph carrier protein(s) and sequestered by vitellins in the developing oocytes. This work extends, substantially, current knowledge of haem auxotrophy in ticks and underscores the importance of haem and iron metabolism as rational targets for anti-tick interventions.
- Klíčová slova
- biochemistry, haem auxotrophy, haem oxygenase, haematophagy, infectious disease, iron metabolism, microbiology, ticks,
- MeSH
- fertilita MeSH
- hem metabolismus MeSH
- klíšťata metabolismus fyziologie MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hem MeSH
To identify the gut-associated tick aspartic hemoglobinase, this work focuses on the functional diversity of multiple Ixodes ricinus cathepsin D forms (IrCDs). Out of three encoding genes representing Ixodes scapularis genome paralogs, IrCD1 is the most distinct enzyme with a shortened propeptide region and a unique pattern of predicted post-translational modifications. IrCD1 gene transcription is induced by tick feeding and is restricted to the gut tissue. The hemoglobinolytic role of IrCD1 was further supported by immunolocalization of IrCD1 in the vesicles of tick gut cells. Properties of recombinantly expressed rIrCD1 are consistent with the endo-lysosomal environment because the zymogen is autoactivated and remains optimally active in acidic conditions. Hemoglobin cleavage pattern of rIrCD1 is identical to that produced by the native enzyme. The preference for hydrophobic residues at the P1 and P1' position was confirmed by screening a novel synthetic tetradecapeptidyl substrate library. Outside the S1-S1' regions, rIrCD1 tolerates most amino acids but displays a preference for tyrosine at P3 and alanine at P2'. Further analysis of the cleavage site location within the peptide substrate indicated that IrCD1 is a true endopeptidase. The role in hemoglobinolysis was verified with RNAi knockdown of IrCD1 that decreased gut extract cathepsin D activity by >90%. IrCD1 was newly characterized as a unique hemoglobinolytic cathepsin D contributing to the complex intestinal proteolytic network of mainly cysteine peptidases in ticks.
- MeSH
- genetická transkripce fyziologie MeSH
- genom fyziologie MeSH
- hemoglobiny genetika metabolismus MeSH
- kathepsin D genetika metabolismus MeSH
- klíště enzymologie genetika MeSH
- posttranslační úpravy proteinů fyziologie MeSH
- proteiny členovců genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- střeva enzymologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemoglobiny MeSH
- kathepsin D MeSH
- proteiny členovců MeSH
- rekombinantní proteiny MeSH
BACKGROUND: Ticks are vectors of a wide variety of pathogens causing severe diseases in humans and domestic animals. Intestinal digestion of the host blood is an essential process of tick physiology and also a limiting factor for pathogen transmission since the tick gut represents the primary site for pathogen infection and proliferation. Using the model tick Ixodes ricinus, the European Lyme disease vector, we have previously demonstrated by genetic and biochemical analyses that host blood is degraded in the tick gut by a network of acidic peptidases of the aspartic and cysteine classes. RESULTS: This study reveals the digestive machinery of the I. ricinus during the course of blood-feeding on the host. The dynamic profiling of concentrations, activities and mRNA expressions of the major digestive enzymes demonstrates that the de novo synthesis of peptidases triggers the dramatic increase of the hemoglobinolytic activity along the feeding period. Overall hemoglobinolysis, as well as the activity of digestive peptidases are negligible at the early stage of feeding, but increase dramatically towards the end of the slow feeding period, reaching maxima in fully fed ticks. This finding contradicts the established opinion that blood digestion is reduced at the end of engorgement. Furthermore, we show that the digestive proteolysis is localized intracellularly throughout the whole duration of feeding. CONCLUSIONS: Results suggest that the egressing proteolytic system in the early stage of feeding and digestion is a potential target for efficient impairment, most likely by blocking its components via antibodies present in the host blood. Therefore, digestive enzymes are promising candidates for development of novel 'anti-tick' vaccines capable of tick control and even transmission of tick-borne pathogens.
- Publikační typ
- časopisecké články MeSH
Ticks are among the most important vectors of a wide range of human and animal diseases. During blood feeding, ticks are exposed to an enormous amount of free iron that must be appropriately used and detoxified. However, the mechanism of iron metabolism in ticks is poorly understood. Here, we show that ticks possess a complex system that efficiently utilizes, stores and transports non-heme iron within the tick body. We have characterized a new secreted ferritin (FER2) and an iron regulatory protein (IRP1) from the sheep tick, Ixodes ricinus, and have demonstrated their relationship to a previously described tick intracellular ferritin (FER1). By using RNA interference-mediated gene silencing in the tick, we show that synthesis of FER1, but not of FER2, is subject to IRP1-mediated translational control. Further, we find that depletion of FER2 from the tick plasma leads to a loss of FER1 expression in the salivary glands and ovaries that normally follows blood ingestion. We therefore suggest that secreted FER2 functions as the primary transporter of non-heme iron between the tick gut and the peripheral tissues. Silencing of the fer1, fer2, and irp1 genes by RNAi has an adverse impact on hatching rate and decreases postbloodmeal weight in tick females. Importantly, knockdown of fer2 dramatically impairs the ability of ticks to feed, thus making FER2 a promising candidate for development of an efficient anti-tick vaccine.
- MeSH
- analýza přežití MeSH
- biologické modely MeSH
- ferritiny genetika MeSH
- fylogeneze MeSH
- hmyzí geny MeSH
- hmyzí proteiny genetika metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- klíšťata genetika růst a vývoj fyziologie MeSH
- klonování DNA MeSH
- messenger RNA genetika metabolismus MeSH
- morčata MeSH
- proteosyntéza MeSH
- regulace genové exprese MeSH
- rozmnožování MeSH
- stanovení celkové genové exprese MeSH
- stravovací zvyklosti MeSH
- umlčování genů MeSH
- western blotting MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- morčata MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferritiny MeSH
- hmyzí proteiny MeSH
- messenger RNA MeSH
- železo MeSH
BACKGROUND: In recent years, there have been several sialome projects revealing transcripts expressed in the salivary glands of ticks, which are important vectors of several human diseases. Here, we focused on the sialome of the European vector of Lyme disease, Ixodes ricinus. RESULTS: In the attempt to describe expressed genes and their dynamics throughout the feeding period, we constructed cDNA libraries from four different feeding stages of Ixodes ricinus females: unfed, 24 hours after attachment, four (partially fed) and seven days (fully engorged) after attachment. Approximately 600 randomly selected clones from each cDNA library were sequenced and analyzed. From a total 2304 sequenced clones, 1881 sequences forming 1274 clusters underwent subsequent functional analysis using customized bioinformatics software. Clusters were sorted according to their predicted function and quantitative comparison among the four libraries was made. We found several groups of over-expressed genes associated with feeding that posses a secretion signal and may be involved in tick attachment, feeding or evading the host immune system. Many transcripts clustered into families of related genes with stage-specific expression. Comparison to Ixodes scapularis and I. pacificus transcripts was made. CONCLUSION: In addition to a large number of homologues of the known transcripts, we obtained several novel predicted protein sequences. Our work contributes to the growing list of proteins associated with tick feeding and sheds more light on the dynamics of the gene expression during tick feeding. Additionally, our results corroborate previous evidence of gene duplication in the evolution of ticks.
- MeSH
- arachnida jako vektory genetika metabolismus MeSH
- DNA primery genetika MeSH
- exprimované sekvenční adresy MeSH
- fylogeneze MeSH
- genová knihovna MeSH
- klíště genetika metabolismus MeSH
- komplementární DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- slinné proteiny a peptidy chemie genetika MeSH
- sliny metabolismus MeSH
- stanovení celkové genové exprese MeSH
- výpočetní biologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- DNA primery MeSH
- komplementární DNA MeSH
- slinné proteiny a peptidy MeSH