Nejvíce citovaný článek - PubMed ID 15152093
Identification of the N-glycosylation sites on glutamate carboxypeptidase II necessary for proteolytic activity
BACKGROUND: Glutamate carboxypeptidase 2 (GCP2) belongs to the M28B metalloprotease subfamily encompassing a variety of zinc-dependent exopeptidases that can be found in many eukaryotes, including unicellular organisms. Limited information exists on the physiological functions of GCP2 orthologs in mammalian tissues outside of the brain and intestine, and such data are completely absent for non-mammalian species. Here, we investigate GCP2 orthologs found in trematodes, not only as putative instrumental molecules for defining their basal function(s) but also as drug targets. METHODS: Identified genes encoding M28B proteases Schistosoma mansoni and Fasciola hepatica genomes were analyzed and annotated. Homology modeling was used to create three-dimensional models of SmM28B and FhM28B proteins using published X-ray structures as the template. For S. mansoni, RT-qPCR was used to evaluate gene expression profiles, and, by RNAi, we exploited the possible impact of knockdown on the viability of worms. Enzymes from both parasite species were cloned for recombinant expression. Polyclonal antibodies raised against purified recombinant enzymes and RNA probes were used for localization studies in both parasite species. RESULTS: Single genes encoding M28B metalloproteases were identified in the genomes of S. mansoni and F. hepatica. Homology models revealed the conserved three-dimensional fold as well as the organization of the di-zinc active site. Putative peptidase activities of purified recombinant proteins were assayed using peptidic libraries, yet no specific substrate was identified, pointing towards the likely stringent substrate specificity of the enzymes. The orthologs were found to be localized in reproductive, digestive, nervous, and sensory organs as well as parenchymal cells. Knockdown of gene expression by RNAi silencing revealed that the genes studied were non-essential for trematode survival under laboratory conditions, reflecting similar findings for GCP2 KO mice. CONCLUSIONS: Our study offers the first insight to our knowledge into M28B protease orthologs found in trematodes. Conservation of their three-dimensional structure, as well as tissue expression pattern, suggests that trematode GCP2 orthologs may have functions similar to their mammalian counterparts and can thus serve as valuable models for future studies aimed at clarifying the physiological role(s) of GCP2 and related subfamily proteases.
- Klíčová slova
- Fasciola hepatica, Folate hydrolase, Immunohistochemistry, M28B metalloproteases, NAALADase, Platyhelminth, Prostate specific-membrane antigen, RNA in situ hybridization, Schistosoma mansoni,
- MeSH
- Fasciola hepatica * genetika MeSH
- myši MeSH
- proteasy MeSH
- savci MeSH
- Schistosoma mansoni MeSH
- Trematoda * genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glutamate carboxypeptidase MeSH Prohlížeč
- proteasy MeSH
INTRODUCTION: N-glycosylation is a ubiquitous and variable posttranslational modification that regulates physiological functions of secretory and membrane-associated proteins and the dysregulation of glycosylation pathways is often associated with cancer growth and metastasis. Prostate-specific membrane antigen (PSMA) is an established biomarker for prostate cancer imaging and therapy. METHODS: Mass spectrometry was used to analyze the distribution of the site-specific glycoforms of PSMA in insect, human embryonic kidney, and prostate cancer cells, and in prostate tissue upon immunoaffinity enrichment. RESULTS: While recombinant PSMA expressed in insect cells was decorated mainly by paucimannose and high mannose glycans, complex, hybrid, and high mannose glycans were detected in samples from human cells and tissue. We noted an interesting spatial distribution of the glycoforms on the PSMA surface-high mannose glycans were the dominant glycoforms at the N459, N476, and N638 sequons facing the plasma membrane, while the N121, N195, and N336 sites, located at the exposed apical PSMA domain, carried primarily complex glycans. The presence of high mannose glycoforms at the former sequons likely results from the limited access of enzymes of the glycosynthetic pathway required for the synthesis of the complex structures. In line with the limited accessibility of membrane-proximal sites, no glycosylation was observed at the N51 site positioned closest to the membrane. CONCLUSIONS: Our study presents initial descriptive analysis of the glycoforms of PSMA observed in cell lines and in prostate tissue. It will hopefully stimulate further research into PSMA glycoforms in the context of tumor staging, noninvasive detection of prostate tumors, and the impact of glycoforms on physicochemical and enzymatic characteristics of PSMA in a tissue-specific manner.
- Klíčová slova
- N-glycosylation, NAALADase I, PSMA, folate hydrolase, glutamate carboxypeptidase II, site-specific glycoform,
- MeSH
- antigeny povrchové metabolismus MeSH
- buněčné linie MeSH
- glutamátkarboxypeptidasa II metabolismus MeSH
- glykosylace MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- nádorové biomarkery analýza MeSH
- nádory prostaty * metabolismus patologie MeSH
- polysacharidy * klasifikace metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- prostata * enzymologie metabolismus patologie MeSH
- staging nádorů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny povrchové MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- nádorové biomarkery MeSH
- polysacharidy * MeSH
Calcium ions are required for proper function of a wide spectrum of proteins within cells. X-ray crystallography of human glutamate carboxypeptidase II (GCPII) revealed the presence of a Ca2+ -binding site, but its importance for the structure and function of this metallopeptidase has not been elucidated to date. Here, we prepared a panel of mutants targeting residues that form the Ca2+ coordination sphere of GCPII and analyzed their structural and enzymatic properties using an array of complementary biophysical and biochemical approaches. Our data unequivocally show that even a slight disruption of the Ca2+ -binding site destabilizes the three-dimensional fold of GCPII and is associated with impaired secretion, a high propensity to form nonphysiological oligomers, and an inability to bind active site-targeted ligands. Additionally, the Ca2+ -binding site is critical for maintenance of the native homodimeric quaternary arrangement of GCPII, which is indispensable for its enzymatic activity. Overall, our results offer a clear picture of the importance of Ca2+ for the structural integrity and hydrolytic activity of human GCPII and by extension homologous members of the M28 zinc-dependent metallopeptidase family.
- Klíčová slova
- NAALADase, calcium ion, circular dichroism, differential scanning fluorimetry, dimerization, folate hydrolase, metallopeptidase, prostate-specific membrane antigen,
- MeSH
- dimerizace MeSH
- glutamátkarboxypeptidasa II chemie genetika metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- stabilita proteinů MeSH
- teplota * MeSH
- vápník chemie metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glutamátkarboxypeptidasa II MeSH
- vápník MeSH
Glutamate carboxypeptidase II (GCPII) is a membrane-bound binuclear zinc metallopeptidase with the highest expression levels found in the nervous and prostatic tissue. Throughout the nervous system, glia-bound GCPII is intimately involved in the neuron-neuron and neuron-glia signaling via the hydrolysis of N-acetylaspartylglutamate (NAAG), the most abundant mammalian peptidic neurotransmitter. The inhibition of the GCPII-controlled NAAG catabolism has been shown to attenuate neurotoxicity associated with enhanced glutamate transmission and GCPII-specific inhibitors demonstrate efficacy in multiple preclinical models including traumatic brain injury, stroke, neuropathic and inflammatory pain, amyotrophic lateral sclerosis, and schizophrenia. The second major area of pharmacological interventions targeting GCPII focuses on prostate carcinoma; GCPII expression levels are highly increased in androgen-independent and metastatic disease. Consequently, the enzyme serves as a potential target for imaging and therapy. This review offers a summary of GCPII structure, physiological functions in healthy tissues, and its association with various pathologies. The review also outlines the development of GCPII-specific small-molecule compounds and their use in preclinical and clinical settings.
- MeSH
- glutamátkarboxypeptidasa II antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- nádory prostaty diagnóza farmakoterapie metabolismus MeSH
- nemoci nervového systému diagnóza farmakoterapie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glutamátkarboxypeptidasa II MeSH
Affinity purification is a useful approach for purification of recombinant proteins. Eukaryotic expression systems have become more frequently used at the expense of prokaryotic systems since they afford recombinant eukaryotic proteins with post-translational modifications similar or identical to the native ones. Here, we present a one-step affinity purification set-up suitable for the purification of secreted proteins. The set-up is based on the interaction between biotin and mutated streptavidin. Drosophila Schneider 2 cells are chosen as the expression host, and a biotin acceptor peptide is used as an affinity tag. This tag is biotinylated by Escherichia coli biotin-protein ligase in vivo. We determined that localization of the ligase within the ER led to the most effective in vivo biotinylation of the secreted proteins. We optimized a protocol for large-scale expression and purification of AviTEV-tagged recombinant human glutamate carboxypeptidase II (Avi-GCPII) with milligram yields per liter of culture. We also determined the 3D structure of Avi-GCPII by X-ray crystallography and compared the enzymatic characteristics of the protein to those of its non-tagged variant. These experiments confirmed that AviTEV tag does not affect the biophysical properties of its fused partner. Purification approach, developed here, provides not only a sufficient amount of highly homogenous protein but also specifically and effectively biotinylates a target protein and thus enables its subsequent visualization or immobilization.
- MeSH
- antigeny povrchové chemie genetika izolace a purifikace metabolismus MeSH
- biotin chemie metabolismus MeSH
- biotinylace MeSH
- buněčné linie MeSH
- Drosophila cytologie MeSH
- Escherichia coli enzymologie genetika MeSH
- exprese genu MeSH
- glutamátkarboxypeptidasa II chemie genetika izolace a purifikace metabolismus MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- rekombinantní proteiny chemie genetika izolace a purifikace metabolismus MeSH
- sekvence aminokyselin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antigeny povrchové MeSH
- biotin MeSH
- FOLH1 protein, human MeSH Prohlížeč
- glutamátkarboxypeptidasa II MeSH
- rekombinantní proteiny MeSH
BACKGROUND: Fungal beta-N-acetylhexosaminidases catalyze the hydrolysis of chitobiose into its constituent monosaccharides. These enzymes are physiologically important during the life cycle of the fungus for the formation of septa, germ tubes and fruit-bodies. Crystal structures are known for two monomeric bacterial enzymes and the dimeric human lysosomal beta-N-acetylhexosaminidase. The fungal beta-N-acetylhexosaminidases are robust enzymes commonly used in chemoenzymatic syntheses of oligosaccharides. The enzyme from Aspergillus oryzae was purified and its sequence was determined. RESULTS: The complete primary structure of the fungal beta-N-acetylhexosaminidase from Aspergillus oryzae CCF1066 was used to construct molecular models of the catalytic subunit of the enzyme, the enzyme dimer, and the N-glycosylated dimer. Experimental data were obtained from infrared and Raman spectroscopy, and biochemical studies of the native and deglycosylated enzyme, and are in good agreement with the models. Enzyme deglycosylated under native conditions displays identical kinetic parameters but is significantly less stable in acidic conditions, consistent with model predictions. The molecular model of the deglycosylated enzyme was solvated and a molecular dynamics simulation was run over 20 ns. The molecular model is able to bind the natural substrate - chitobiose with a stable value of binding energy during the molecular dynamics simulation. CONCLUSION: Whereas the intracellular bacterial beta-N-acetylhexosaminidases are monomeric, the extracellular secreted enzymes of fungi and humans occur as dimers. Dimerization of the fungal beta-N-acetylhexosaminidase appears to be a reversible process that is strictly pH dependent. Oligosaccharide moieties may also participate in the dimerization process that might represent a unique feature of the exclusively extracellular enzymes. Deglycosylation had only limited effect on enzyme activity, but it significantly affected enzyme stability in acidic conditions. Dimerization and N-glycosylation are the enzyme's strategy for catalytic subunit stabilization. The disulfide bridge that connects Cys448 with Cys483 stabilizes a hinge region in a flexible loop close to the active site, which is an exclusive feature of the fungal enzymes, neither present in bacterial nor mammalian structures. This loop may play the role of a substrate binding site lid, anchored by a disulphide bridge that prevents the substrate binding site from being influenced by the flexible motion of the loop.
- MeSH
- Aspergillus oryzae enzymologie MeSH
- beta-N-acetylhexosaminidasy chemie izolace a purifikace metabolismus MeSH
- dimerizace MeSH
- glykosylace MeSH
- koncentrace vodíkových iontů MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- počítačová simulace * MeSH
- Ramanova spektroskopie metody MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- stabilita enzymů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-N-acetylhexosaminidasy MeSH