Most cited article - PubMed ID 15227788
Classical and molecular approaches as a powerful tool for the characterization of rumen polycentric fungi
Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.
- Keywords
- (meta) transcriptomics, Neocallimastigomycota, anaerobic fungi, genomics, metabolomics, phylogeny, proteomics, rumen,
- Publication type
- Journal Article MeSH
- Review MeSH
The anaerobic fungus Anaeromyces mucronatus KF8 grown in batch culture on M10 medium with rumen fluid and microcrystalline cellulose as carbon source produced a broad range of enzymes requisite for degradation of plant structural and storage saccharides including cellulase, endoglucanase, xylanase, alpha-xylosidase, beta-xylosidase, alpha-glucosidase, beta-glucosidase, beta-galactosidase, mannosidase, cellobiohydrolase, amylase, laminarinase, pectinase and pectate lyase. These enzymes were detected in both the intra- and extracellular fractions, but production into the medium was prevalent with the exception of intracellular beta-xylosidase, chitinases, N-acetylglucosaminidase, and lipase. Xylanase activity was predominant among the polysaccharide hydrolases. Extracellular production of xylanase was stimulated by the presence of cellobiose and oat spelt xylan. Zymogram of xylanases of strain KF8 grown on different carbon sources revealed several isoforms of xylanases with approximate molar masses ranging from 26 to 130 kDa.
- MeSH
- Anaerobiosis MeSH
- Cellobiose metabolism MeSH
- Cellulose metabolism MeSH
- Fungal Proteins biosynthesis MeSH
- Glycoside Hydrolases biosynthesis chemistry classification MeSH
- Culture Media chemistry MeSH
- Molecular Weight MeSH
- Neocallimastigales enzymology physiology MeSH
- Xylans metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cellobiose MeSH
- Cellulose MeSH
- Fungal Proteins MeSH
- Glycoside Hydrolases MeSH
- Culture Media MeSH
- Xylans MeSH
The fatty acid (FA) composition of fresh mycelia of anaerobic rumen fungi was determined. The fatty acids methyl esters (FAME) of six strains belonging to four genera (Neocallimastix, Caecomyces, Orpinomyces, Anaeromyces) and one unknown strain were analyzed by gas chromatography. All studied fungi possess the same FAs but differences were found in their relative concentrations. The FA profile of anaerobic fungi comprises carbon chains of length ranging from 12 to 24; the most common fatty acids were stearic (C(18:0)), arachidic (C(20:0)), heneicosanoic (C(21:0)), behenic (C(22:0)), tricosanoic (C(23:0)) and lignoceric (C(24:0)) with relative amount representing >4% of total FA. Significant differences were determined for heptadecanoic, oleic, behenic and tricosanoic acids. Rumen anaerobic fungi can contain very long chain fatty acids; we found unsaturated fatty acids including cis-11-eicosenoic (C(20:1)), cis-11,14-eicosadienoic (C(20:2)), erucic (C(22:1n9)), cis-13,16-docosadienoic (C(22:2)) and nervonic (C(24:1)) acids in very small amounts but their presence seems to be unique for anaerobic fungi.
- MeSH
- Anaerobiosis MeSH
- Rumen microbiology MeSH
- Species Specificity MeSH
- Fungi chemistry classification growth & development metabolism MeSH
- Fatty Acids analysis isolation & purification MeSH
- Mycological Typing Techniques * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fatty Acids MeSH
The common feature of all chytridiomycetous fungi, aerobic as well as anaerobic, is an abundance of chitin in their cell wall. The genes coding for chitinases have therefore been widely used as phylogenetic markers in ascomycetes. As their utility for Chytridiomycetes has not been determined we chose the gene encoding an enzyme involved in chitin degradation and energy metabolism, the beta-(1,4)-N-acetylglucosaminidase (nag1). Primer pair Nag-forward and Nag-reverse was used to create PCR product from 5 strains of anaerobic and 7 strains of aerobic chytrids. However, Blast search of sequenced amplicons showed that these primers are specific only for fungus Emericella nidulans. Amino acid alignment of Nag1 proteins of fungal, protozoal and bacterial origin available in GenBank database was therefore performed. Five amino acid regions were found to be conserved enough to serve as a suitable domain for the design of a set of primers for the universal amplification of the nag1 gene in the Neocallimastigales fungi.
- MeSH
- Acetylglucosaminidase chemistry genetics MeSH
- Aerobiosis MeSH
- Anaerobiosis MeSH
- Chytridiomycota enzymology genetics MeSH
- DNA, Fungal analysis isolation & purification MeSH
- DNA Primers genetics MeSH
- Fungal Proteins genetics MeSH
- Fungi classification enzymology genetics growth & development MeSH
- Polymerase Chain Reaction MeSH
- Nucleic Acid Amplification Techniques methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetylglucosaminidase MeSH
- DNA, Fungal MeSH
- DNA Primers MeSH
- Fungal Proteins MeSH
The suitability of restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA cluster for discriminating two genera of anaerobic polycentric fungi, Orpinomyces and Anaeromyces, was determined. Three PCR-amplified DNA fragments--nuclear small subunit (SSU; 18S rDNA), the nuclear large subunit (LSU; 28S rDNA) and internal transcribed spacer (ITS)--were restricted with endonucleases AluI, DraI, HinfI and MboI. Although the SSU DNA fragment could be restricted successfully by all four enzymes, no differences were observed between restriction patterns of Orpinomyces and Anaeromyces. The most polymorphic restriction pattern between Orpinomyces and Anaeromyces resulted from cleavage of LSU rDNA fragments cut by AluI and HinfI and ITS fragment cut by DraI and HinfI. Genus-specific RFLP patterns were determined for Orpinomyces and Anaeromyces genera; the results showed that the PCR-RFLP analysis of rDNA offers an easy and rapid tool for differentiation of two polycentric genera of anaerobic fungi, which could be hardly separated on the basis of morphology.
- MeSH
- DNA Fingerprinting methods MeSH
- Classification MeSH
- Neocallimastigales classification genetics MeSH
- Polymerase Chain Reaction MeSH
- Polymorphism, Restriction Fragment Length MeSH
- DNA, Ribosomal genetics MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH