Nejvíce citovaný článek - PubMed ID 15259018
Signaling assemblies formed in mast cells activated via Fcepsilon receptor I dimers
Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI β and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.
- Klíčová slova
- 4.1R protein, chemotaxis, degranulation, mast cell, passive cutaneous anaphylaxis,
- MeSH
- chemotaxe imunologie MeSH
- degranulace buněk imunologie MeSH
- mastocyty imunologie metabolismus MeSH
- mikrofilamentové proteiny imunologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- pasivní kožní anafylaxe imunologie MeSH
- receptory IgE imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Epb41 protein, mouse MeSH Prohlížeč
- mikrofilamentové proteiny MeSH
- receptory IgE MeSH
Mast cells play an effector role in innate immunity, allergy, and inflammation. Antigen-mediated activation of mast cells initiates signaling events leading to Ca2+ response and the release of inflammatory and allergic mediators from granules. Diseases associated with deregulated mast cell functions are hard to treat and there is an increasing demand for new therapeutic strategies. Miltefosine (hexadecylphosphocholine) is a new candidate for treatment of mast cell-driven diseases as it inhibits activation of mast cells. It has been proposed that miltefosine acts as a lipid raft modulator through its interference with the structural organization of surface receptors in the cell membrane. However, molecular mechanisms of its action are not fully understood. Here, we report that in antigen-activated bone marrow-derived mast cells (BMMCs), miltefosine inhibits degranulation, reorganization of microtubules, as well as antigen-induced chemotaxis. While aggregation and tyrosine phosphorylation of IgE receptors were suppressed in activated cells pre-treated with miltefosine, overall tyrosine phosphorylation levels of Lyn and Syk kinases, and Ca2+ influx were not inhibited. In contrast, lipid raft disruptor methyl-β-cyclodextrin attenuated the Ca2+ influx. Tagged-miltefosine rapidly localized into the cell interior, and live-cell imaging of BMMCs with labeled intracellular granules disclosed that miltefosine inhibited movement of some granules. Immunoprecipitation and in vitro kinase assays revealed that miltefosine inhibited Ca2+- and diacylglycerol-regulated conventional protein kinase C (cPKC) isoforms that are important for mast cell degranulation. Inhibition of cPKCs by specific inhibitor Ly333531 affected activation of BMMCs in the same way as miltefosine. Collectively, our data suggest that miltefosine modulates mast cells both at the plasma membrane and in the cytosol by inhibition of cPKCs. This alters intracellular signaling pathway(s) directed to microtubules, degranulation, and migration.
- Klíčová slova
- bone marrow-derived mast cells, cell activation, microtubules, miltefosine, protein kinase C,
- Publikační typ
- časopisecké články MeSH
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
- Klíčová slova
- CD9, IgE receptor, LAT, NTAL, membrane microdomains, plasma membrane, signal transduction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis.
- Klíčová slova
- IgE receptor, LAT/LAT1, LAX, NTAL/Lab/LAT2, PAG/Cbp, mast cells, plasma membrane, transmembrane adaptor proteins,
- Publikační typ
- časopisecké články MeSH
The earliest known biochemical step that occurs after ligand binding to the multichain immune recognition receptor is tyrosine phosphorylation of the receptor subunits. In mast cells and basophils activated by multivalent antigen-IgE complexes, this step is mediated by Src family kinase Lyn, which phosphorylates the high affinity IgE receptor (Fc epsilonRI). However, the exact molecular mechanism of this phosphorylation step is incompletely understood. In this study, we tested the hypothesis that changes in activity and/or topography of protein-tyrosine phosphatases (PTPs) could play a major role in the Fc epsilonRI triggering. We found that exposure of rat basophilic leukemia cells or mouse bone marrow-derived mast cells to PTP inhibitors, H(2)O(2) or pervanadate, induced phosphorylation of the Fc epsilonRI subunits, similarly as Fc epsilonRI triggering. Interestingly, and in sharp contrast to antigen-induced activation, neither H(2)O(2) nor pervanadate induced any changes in the association of Fc epsilonRI with detergent-resistant membranes and in the topography of Fc epsilonRI detectable by electron microscopy on isolated plasma membrane sheets. In cells stimulated with pervanadate, H(2)O(2) or antigen, enhanced oxidation of active site cysteine of several PTPs was detected. Unexpectedly, most of oxidized phosphatases bound to the plasma membrane were associated with the actin cytoskeleton. Several PTPs (SHP-1, SHP-2, hematopoietic PTP, and PTP-MEG2) showed changes in their enzymatic activity and/or oxidation state during activation. Based on these and other data, we propose that down-regulation of enzymatic activity of PTPs and/or changes in their accessibility to the substrates play a key role in initial tyrosine phosphorylation of the Fc epsilonRI and other multichain immune receptors.
- MeSH
- aktivace enzymů účinky léků genetika imunologie MeSH
- antigeny imunologie metabolismus farmakologie MeSH
- fosforylace účinky léků genetika imunologie MeSH
- inhibitory enzymů farmakologie MeSH
- krysa rodu Rattus MeSH
- mastocyty imunologie metabolismus MeSH
- membránové mikrodomény genetika imunologie metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- oxidace-redukce účinky léků MeSH
- oxidancia farmakologie MeSH
- peroxid vodíku farmakologie MeSH
- receptory IgE genetika imunologie metabolismus MeSH
- skupina kinas odvozených od src-genu genetika imunologie metabolismus MeSH
- transport proteinů účinky léků genetika imunologie MeSH
- tyrosinfosfatasy antagonisté a inhibitory genetika imunologie metabolismus MeSH
- vanadáty farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- inhibitory enzymů MeSH
- lyn protein-tyrosine kinase MeSH Prohlížeč
- oxidancia MeSH
- peroxid vodíku MeSH
- pervanadate MeSH Prohlížeč
- receptory IgE MeSH
- skupina kinas odvozených od src-genu MeSH
- tyrosinfosfatasy MeSH
- vanadáty MeSH