Nejvíce citovaný článek - PubMed ID 15548738
The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.
- Klíčová slova
- Arctic, Nordic agriculture, climate change, crop phenotyping, functional phenomics, wild crops,
- MeSH
- fenomika * MeSH
- klimatické změny MeSH
- roční období MeSH
- zemědělské plodiny genetika MeSH
- zemědělství * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Despite the agronomic importance of sugar beet (Beta vulgaris L.), the early-stage development of its taproot has only been poorly investigated. Thus, the mechanisms that determine growth and sugar accumulation in sugar beet are largely unknown. In the presented study, a physiological characterization of early-stage sugar beet taproot development was conducted. Activities were analyzed for fourteen key enzymes of carbohydrate metabolism in developing taproots over the first 80 days after sowing. In addition, we performed in situ localizations of selected carbohydrate-metabolic enzyme activities, anatomical investigations, and quantifications of soluble carbohydrates, hexose phosphates, and phytohormones. Based on the accumulation dynamics of biomass and sucrose, as well as on anatomical parameters, the early phase of taproot development could be subdivided into three stages-prestorage, transition, secondary growth and sucrose accumulation stage-each of which was characterized by distinct metabolic and phytohormonal signatures. The enzyme activity signatures corresponding to these stages were also shown to be robustly reproducible in experiments conducted in two additional locations. The results from this physiological phenotyping approach contribute to the identification of the key regulators of sugar beet taproot development and open up new perspectives for sugar beet crop improvement concerning both physiological marker-based breeding and biotechnological approaches.
- Klíčová slova
- assimilate partitioning, carbohydrate metabolism, developmental regulation, physiological phenotyping, sucrose accumulation, taproot development,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Reactive oxygen species (ROS) such as hydrogen peroxide and superoxide anions significantly accumulate during biotic and abiotic stress and cause oxidative damage and eventually cell death. There is accumulating evidence that ROS are also involved in regulating beneficial plant-microbe interactions, signal transduction and plant growth and development. Due to the relevance of ROS throughout the life cycle and for interaction with the multifactorial environment, the physiological phenotyping of the mechanisms controlling ROS homeostasis is of general importance. RESULTS: In this study, we have developed a robust and resource-efficient experimental platform that allows the determination of the activities of the nine key ROS scavenging enzymes from a single extraction that integrates posttranscriptional and posttranslational regulations. The assays were optimized and adapted for a semi-high throughput 96-well assay format. In a case study, we have analyzed tobacco leaves challenged by pathogen infection, drought and salt stress. The three stress factors resulted in distinct activity signatures with differential temporal dynamics. CONCLUSIONS: This experimental platform proved to be suitable to determine the antioxidant enzyme activity signature in different tissues of monocotyledonous and dicotyledonous model and crop plants. The universal enzymatic extraction procedure combined with the 96-well assay format demonstrated to be a simple, fast and semi-high throughput experimental platform for the precise and robust fingerprinting of nine key antioxidant enzymatic activities in plants.
- Klíčová slova
- Enzymatic assay, High throughput, Physiological phenotyping, ROS metabolism, Reactive oxygen species,
- Publikační typ
- časopisecké články MeSH