Most cited article - PubMed ID 16254244
Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases
BACKGROUND: Variants of linker histone H1 are tissue-specific and are responsible for chromatin compaction accompanying cell differentiation, mitotic chromosome condensation, and apoptosis. Heterochromatinization, as the main feature of these processes, is also associated with pronounced trimethylation of histones H3 at the lysine 9 position (H3K9me3). METHODS: By confocal microscopy, we analyzed cell cycle-dependent levels and distribution of phosphorylated histone H1 (H1ph) and H3K9me3. By mass spectrometry, we studied post-translational modifications of linker histones. RESULTS: Phosphorylated histone H1, similarly to H3K9me3, has a comparable level in the G1, S, and G2 phases of the cell cycle. A high density of phosphorylated H1 was inside nucleoli of mouse embryonic stem cells (ESCs). H1ph was also abundant in prophase and prometaphase, while H1ph was absent in anaphase and telophase. H3K9me3 surrounded chromosomal DNA in telophase. This histone modification was barely detectable in the early phases of mitosis. Mass spectrometry revealed several ESC-specific phosphorylation sites of H1. HDAC1 depletion did not change H1 acetylation but potentiated phosphorylation of H1.2/H1.3 and H1.4 at serine 38 positions. CONCLUSIONS: Differences in the level and distribution of H1ph and H3K9me3 were revealed during mitotic phases. ESC-specific phosphorylation sites were identified in a linker histone.
- Keywords
- chromatin, epigenetic, histone H1, histone H3, mass spectrometry, nucleolus,
- Publication type
- Journal Article MeSH
The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC35 and β-catenin in mitotic cells.
- Keywords
- PARP inhibitor, RNA pol II, SC-35, splicing,
- MeSH
- HeLa Cells MeSH
- Lamins metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Poly(ADP-ribose) Polymerase Inhibitors therapeutic use MeSH
- Poly (ADP-Ribose) Polymerase-1 MeSH
- RNA Polymerase II metabolism MeSH
- RNA Splicing Factors metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lamins MeSH
- Poly(ADP-ribose) Polymerase Inhibitors MeSH
- PARP1 protein, human MeSH Browser
- Poly (ADP-Ribose) Polymerase-1 MeSH
- RNA Polymerase II MeSH
- RNA Splicing Factors MeSH
ACE2 was observed as the cell surface receptor of the SARS-CoV-2 virus. Interestingly, we also found ACE2 positivity inside the cell nucleus. The ACE2 levels changed during cell differentiation and aging and varied in distinct cell types. We observed ACE2 depletion in the aortas of aging female mice, similarly, the aging caused ACE2 decrease in the kidneys. Compared with that in the heart, brain and kidneys, the ACE2 level was the lowest in the mouse lungs. In mice exposed to nicotine, ACE2 was not changed in olfactory bulbs but in the lungs, ACE2 was upregulated in females and downregulated in males. These observations indicate the distinct gender-dependent properties of ACE2. Differentiation into enterocytes, and cardiomyocytes, caused ACE2 depletion. The cardiomyogenesis was accompanied by renin upregulation, delayed in HDAC1-depleted cells. In contrast, vitamin D2 decreased the renin level while ACE2 was upregulated. Together, the ACE2 level is high in non-differentiated cells. This protein is more abundant in the tissues of mouse embryos and young mice in comparison with older animals. Mostly, downregulation of ACE2 is accompanied by renin upregulation. Thus, the pathophysiology of COVID-19 disease should be further studied not only by considering the ACE2 level but also the whole renin-angiotensin system.
- Keywords
- ACE2, embryonic heart, human kidney embryonic cells, lung cancer cells, renin,
- MeSH
- Angiotensin-Converting Enzyme 2 metabolism MeSH
- Cell Differentiation physiology MeSH
- A549 Cells MeSH
- HT29 Cells MeSH
- COVID-19 epidemiology pathology virology MeSH
- HEK293 Cells MeSH
- Humans MeSH
- Mice MeSH
- Pandemics MeSH
- Gene Expression Regulation physiology MeSH
- Renin-Angiotensin System physiology MeSH
- Renin metabolism MeSH
- SARS-CoV-2 pathogenicity MeSH
- Sex Factors MeSH
- Aging physiology MeSH
- Age Factors MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Angiotensin-Converting Enzyme 2 MeSH
- Renin MeSH
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
- Keywords
- FLIM-FRET, HP1, epigenetics, irradiation, mass spectrometry, nucleolus, phosphorylation,
- MeSH
- Cell Nucleolus metabolism MeSH
- Chromosomal Proteins, Non-Histone metabolism MeSH
- Phosphorylation MeSH
- HeLa Cells MeSH
- Chromobox Protein Homolog 5 MeSH
- Humans MeSH
- Tumor Cells, Cultured MeSH
- Optical Imaging MeSH
- DNA Damage MeSH
- Fluorescence Resonance Energy Transfer MeSH
- Serine metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CBX1 protein, human MeSH Browser
- CBX5 protein, human MeSH Browser
- Chromosomal Proteins, Non-Histone MeSH
- Chromobox Protein Homolog 5 MeSH
- Serine MeSH
Cajal bodies (CBs) are important compartments containing accumulated proteins that preferentially regulate RNA-related nuclear events, including splicing. Here, we studied the nuclear distribution pattern of CBs in neurogenesis. In adult brains, coilin was present at a high density, but CB formation was absent in the nuclei of the choroid plexus of the lateral ventricles. Cells of the adult hippocampus were characterized by a crescent-like morphology of coilin protein. We additionally observed a 70 kDa splice variant of coilin in adult mouse brains, which was different to embryonic brains and mouse pluripotent embryonic stem cells (mESCs), characterized by the 80 kDa standard variant of coilin. Here, we also showed that depletion of coilin is induced during neural differentiation and HDAC1 deficiency in mESCs caused coilin accumulation inside the fibrillarin-positive region of the nucleoli. A similar distribution pattern was observed in adult brain hippocampi, characterized by lower levels of both coilin and HDAC1. In summary, we observed that neural differentiation and HDAC1 deficiency lead to coilin depletion and coilin accumulation in body-like structures inside the nucleoli.
- Publication type
- Journal Article MeSH
We studied the histone signature of embryonic and adult brains to strengthen existing evidence of the importance of the histone code in mouse brain development. We analyzed the levels and distribution patterns of H3K9me1, H3K9me2, H3K9me3, and HP1β in both embryonic and adult brains. Western blotting showed that during mouse brain development, the levels of H3K9me1, H3K9me2, and HP1β exhibited almost identical trends, with the highest protein levels occurring at E15 stage. These trends differed from the relatively stable level of H3K9me3 at developmental stages E8, E13, E15, and E18. Compared with embryonic brains, adult brains were characterized by very low levels of H3K9me1/me2/me3 and HP1β. Manipulation of the embryonic epigenome through histone deacetylase inhibitor treatment did not affect the distribution patterns of the studied histone markers in embryonic ventricular ependyma. Similarly, Hdac3 depletion in adult animals had no effect on histone methylation in the adult hippocampus. Our results indicate that the distribution of HP1β in the embryonic mouse brain is related to that of H3K9me1/me2 but not to that of H3K9me3. The unique status of H3K9me3 in the brain was confirmed by its pronounced accumulation in the granular layer of the adult olfactory bulb. Moreover, among the studied proteins, H3K9me3 was the only posttranslational histone modification that was highly abundant at clusters of centromeric heterochromatin, called chromocenters. When we focused on the hippocampus, we found this region to be rich in H3K9me1 and H3K9me3, whereas H3K9me2 and HP1β were present at a very low level or even absent in the hippocampal blade. Taken together, these results revealed differences in the epigenome of the embryonic and adult mouse brain and showed that the adult hippocampus, the granular layer of the adult olfactory bulb, and the ventricular ependyma of the embryonic brain are colonized by specific epigenetic marks.
- Keywords
- Brain sections, Epigenetics, Hippocampus, Histone methylation, Histones, Olfactory bulb,
- MeSH
- Chromosomal Proteins, Non-Histone analysis metabolism MeSH
- Microscopy, Fluorescence MeSH
- Histone-Lysine N-Methyltransferase metabolism MeSH
- Immunohistochemistry MeSH
- Brain embryology metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cbx1 protein, mouse MeSH Browser
- Chromosomal Proteins, Non-Histone MeSH
- Histone-Lysine N-Methyltransferase MeSH
BACKGROUND: Protein exchange kinetics correlate with the level of chromatin condensation and, in many cases, with the level of transcription. We used fluorescence recovery after photobleaching (FRAP) to analyse the kinetics of 18 proteins and determine the relationships between nuclear arrangement, protein molecular weight, global transcription level, and recovery kinetics. In particular, we studied heterochromatin-specific heterochromatin protein 1β (HP1β) B lymphoma Mo-MLV insertion region 1 (BMI1), and telomeric-repeat binding factor 1 (TRF1) proteins, and nucleolus-related proteins, upstream binding factor (UBF) and RNA polymerase I large subunit (RPA194). We considered whether the trajectories and kinetics of particular proteins change in response to histone hyperacetylation by histone deacetylase (HDAC) inhibitors or after suppression of transcription by actinomycin D. RESULTS: We show that protein dynamics are influenced by many factors and events, including nuclear pattern and transcription activity. A slower recovery after photobleaching was found when proteins, such as HP1β, BMI1, TRF1, and others accumulated at specific foci. In identical cells, proteins that were evenly dispersed throughout the nucleoplasm recovered more rapidly. Distinct trajectories for HP1β, BMI1, and TRF1 were observed after hyperacetylation or suppression of transcription. The relationship between protein trajectory and transcription level was confirmed for telomeric protein TRF1, but not for HP1β or BMI1 proteins. Moreover, heterogeneity of foci movement was especially observed when we made distinctions between centrally and peripherally positioned foci. CONCLUSION: Based on our results, we propose that protein kinetics are likely influenced by several factors, including chromatin condensation, differentiation, local protein density, protein binding efficiency, and nuclear pattern. These factors and events likely cooperate to dictate the mobility of particular proteins.
- Publication type
- Journal Article MeSH
Determining averaged effective diffusion constants from experimental measurements of fluorescent proteins in an inhomogeneous medium in the presence of ligand-receptor interactions poses problems of analytical tractability. Here, we introduced a nonfitting method to evaluate the averaged effective diffusion coefficient of a region of interest (which may include a whole nucleus) by mathematical processing of the entire cellular two-dimensional spatial pattern of recovered fluorescence. Spatially and temporally resolved measurements of protein transport inside cells were obtained using the fluorescence recovery after photobleaching technique. Two-dimensional images of fluorescence patterns were collected by laser-scanning confocal microscopy. The method was demonstrated by applying it to an estimation of the mobility of green fluorescent protein-tagged heterochromatin protein 1 in the nuclei of living mouse embryonic fibroblasts. This approach does not require the mathematical solution of a corresponding system of diffusion-reaction equations that is typical of conventional fluorescence recovery after photobleaching data processing, and is most useful for investigating highly inhomogeneous areas, such as cell nuclei, which contain many protein foci and chromatin domains.
- MeSH
- Cell Nucleus metabolism MeSH
- Cell Line MeSH
- Chromosomal Proteins, Non-Histone chemistry genetics metabolism MeSH
- Diffusion MeSH
- Fluorescence MeSH
- Photobleaching MeSH
- Fluorescence Recovery After Photobleaching methods MeSH
- Chromobox Protein Homolog 5 MeSH
- Microscopy, Confocal methods MeSH
- Humans MeSH
- Mathematics MeSH
- Models, Molecular * MeSH
- Mice MeSH
- Reproducibility of Results MeSH
- Solutions MeSH
- Green Fluorescent Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chromosomal Proteins, Non-Histone MeSH
- Chromobox Protein Homolog 5 MeSH
- Solutions MeSH
- Green Fluorescent Proteins MeSH
Heterochromatin protein 1 (HP1), which binds to sites of histone H3 lysine 9 (H3K9) methylation, is primarily responsible for gene silencing and the formation of heterochromatin. We observed that HP1 beta is located in both the chromocenters and fibrillarin-positive nucleoli interiors. However, HP1 alpha and HP1 gamma occupied fibrillarin-positive compartments to a lesser extent, corresponding to the distinct levels of HP1 subtypes at the promoter of rDNA genes. Deficiency of histone methyltransferases SUV39h and/or inhibition of histone deacetylases (HDACi) decreased HP1 beta and H3K9 trimethylation at chromocenters, but not in fibrillarin-positive regions that co-localized with RNA polymerase I. Similarly, SUV39h- and HDACi-dependent nucleolar rearrangement and inhibition of rDNA transcription did not affect the association between HP1 beta and fibrillarin. Moreover, the presence of HP1 beta in nucleoli is likely connected with transcription of ribosomal genes and with the role of fibrillarin in nucleolar processes.
- MeSH
- Cell Nucleolus metabolism MeSH
- Chromosomal Proteins, Non-Histone metabolism MeSH
- Fibroblasts metabolism MeSH
- Cells, Cultured MeSH
- Methyltransferases metabolism MeSH
- Mice MeSH
- Repressor Proteins metabolism MeSH
- Protein Binding MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cbx1 protein, mouse MeSH Browser
- Chromosomal Proteins, Non-Histone MeSH
- fibrillarin MeSH Browser
- Methyltransferases MeSH
- Repressor Proteins MeSH
- Suv39h1 protein, mouse MeSH Browser
Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei.
- MeSH
- Acetylation MeSH
- Cell Nucleus metabolism ultrastructure MeSH
- Chromatin ultrastructure MeSH
- Chromosomal Proteins, Non-Histone physiology MeSH
- Epigenesis, Genetic MeSH
- Gene Expression MeSH
- Histones genetics metabolism MeSH
- Chromobox Protein Homolog 5 MeSH
- Histone Deacetylase Inhibitors MeSH
- Interphase MeSH
- Humans MeSH
- Chromosomes, Human, X metabolism MeSH
- Methylation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Chromatin MeSH
- Chromosomal Proteins, Non-Histone MeSH
- Histones MeSH
- Chromobox Protein Homolog 5 MeSH
- Histone Deacetylase Inhibitors MeSH