Nejvíce citovaný článek - PubMed ID 16258032
The ability to modulate photosynthesis is essential for plants to adapt to fluctuating growing conditions. Populus species show high tolerance to various and highly variable environments. To understand their response strategies against fluctuating environments, this study investigated the morphological and physiological differences of white poplar (Populus alba) leaves when grown in a phytotron, glasshouse, and field. Our results show that the palisade cells were elongated in the field, which would enhance intercellular CO2 exchange. Photosynthetic capacity was the highest in the field leaves, as shown by higher electron transport rates (1.8 to 6.5 times) and carbon assimilation rates (2.7 to 4.2 times). The decrease of PSI acceptor-side limitation and increase of PSI donor-side limitation suggests changes in PSI redox status may contribute to photoprotection. This plasticity of white poplar allows adjusting its structure and photosynthesis under fluctuating conditions, which may partly enable its outstanding tolerance against environmental changes.
- Klíčová slova
- Populus alba, fluctuating conditions, photoinhibition, photosynthesis, plasticity,
- Publikační typ
- časopisecké články MeSH
Tocopherols, lipid-soluble antioxidants play a crucial role in the antioxidant defense system in higher plants. The antioxidant function of α-tocopherol has been widely studied; however, experimental data on the formation of its oxidation products is missing. In this study, we attempt to provide spectroscopic evidence on the detection of oxidation products of α-tocopherol formed by its interaction with singlet oxygen and lipid peroxyl radical. Singlet oxygen was formed using photosensitizer rose bengal and thylakoid membranes isolated from Arabidopsis thaliana. Singlet oxygen reacts with polyunsaturated fatty acid forming lipid hydroperoxide which is oxidized by ferric iron to lipid peroxyl radical. The addition of singlet oxygen to double bond carbon on the chromanol head of α-tocopherol forms α-tocopherol hydroperoxide detected using fluorescent probe swallow-tailed perylene derivative. The decomposition of α-tocopherol hydroperoxide forms α-tocopherol quinone. The hydrogen abstraction from α-tocopherol by lipid peroxyl radical forms α-tocopheroxyl radical detected by electron paramagnetic resonance. Quantification of lipid and protein hydroperoxide from the wild type and tocopherol deficient (vte1) mutant Arabidopsis leaves using a colorimetric ferrous oxidation-xylenol orange assay reveals that α-tocopherol prevents formation of both lipid and protein hydroperoxides at high light. Identification of oxidation products of α-tocopherol might contribute to a better understanding of the protective role of α-tocopherol in the prevention of oxidative damage in higher plants at high light.
- MeSH
- alfa-tokoferol chemie metabolismus MeSH
- antioxidancia chemie metabolismus MeSH
- Arabidopsis genetika růst a vývoj metabolismus účinky záření MeSH
- lipidové peroxidy chemie metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres * MeSH
- peroxid vodíku chemie metabolismus MeSH
- singletový kyslík chemie metabolismus MeSH
- světlo škodlivé účinky MeSH
- vitamin E chemie metabolismus MeSH
- volné radikály chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa-tokoferol MeSH
- antioxidancia MeSH
- lipidové peroxidy MeSH
- peroxid vodíku MeSH
- singletový kyslík MeSH
- tocopheroxy radical MeSH Prohlížeč
- vitamin E MeSH
- volné radikály MeSH
Annexins are a family of calcium- and membrane-binding proteins that are important for plant tolerance to adverse environmental conditions. Annexins function to counteract oxidative stress, maintain cell redox homeostasis, and enhance drought tolerance. In the present study, an endogenous annexin, STANN1, was overexpressed to determine whether crop yields could be improved in potato (Solanum tuberosum L.) during drought. Nine potential potato annexins were identified and their expression characterized in response to drought treatment. STANN1 mRNA was constitutively expressed at a high level and drought treatment strongly increased transcription levels. Therefore, STANN1 was selected for overexpression analysis. Under drought conditions, transgenic potato plants ectopically expressing STANN1 were more tolerant to water deficit in the root zone, preserved more water in green tissues, maintained chloroplast functions, and had higher accumulation of chlorophyll b and xanthophylls (especially zeaxanthin) than wild type (WT). Drought-induced reductions in the maximum efficiency and the electron transport rate of photosystem II (PSII), as well as the quantum yield of photosynthesis, were less pronounced in transgenic plants overexpressing STANN1 than in the WT. This conferred more efficient non-photochemical energy dissipation in the outer antennae of PSII and probably more efficient protection of reaction centers against photooxidative damage in transgenic plants under drought conditions. Consequently, these plants were able to maintain effective photosynthesis during drought, which resulted in greater productivity than WT plants despite water scarcity. Although the mechanisms underlying this stress protection are not yet clear, annexin-mediated photoprotection is probably linked to protection against light-induced oxidative stress.
- MeSH
- annexiny genetika metabolismus MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- fyziologický stres MeSH
- geneticky modifikované rostliny MeSH
- období sucha MeSH
- oxidační stres MeSH
- regulace genové exprese u rostlin MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Solanum tuberosum genetika růst a vývoj metabolismus MeSH
- světlo MeSH
- xanthofyly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- annexiny MeSH
- chlorofyl MeSH
- fotosystém II - proteinový komplex MeSH
- rekombinantní proteiny MeSH
- rostlinné proteiny MeSH
- xanthofyly MeSH