Nejvíce citovaný článek - PubMed ID 16298367
Polyomavirus EGFP-pseudocapsids: analysis of model particles for introduction of proteins and peptides into mammalian cells
Herein, we performed a simple virus capture and photoinactivation procedure using visible light on phosphatidylcholine vesicles. l-α-Phosphatidylcholine vesicles were enriched by viral receptors, GT1b gangliosides, and the nonpolar photosensitizer 5,10,15,20-tetraphenylporphyrin. These vesicles absorb in the blue region of visible light with a high quantum yield of antiviral singlet oxygen, O2 (1Δg). Through the successful incorporation of gangliosides into the structure of vesicles and the encapsulation of photosensitizers in their photoactive and monomeric state, the photogeneration of O2(1Δg) was achieved with high efficiency on demand; this process was triggered by light, and specifically targeting/inactivating viruses were captured on ganglioside receptors due to the short lifetime (3.3 μs) and diffusion pathway (approximately 100 nm) of O2(1Δg). Time-resolved and steady-state luminescence as well as absorption spectroscopy were used to monitor the photoactivity of the photosensitizer and the photogeneration of O2(1Δg) on the surface of the vesicles. The capture of model mouse polyomavirus and its inactivation were achieved using immunofluorescence methods, and loss of infectivity toward mouse fibroblast 3T6 cells was detected.
- Publikační typ
- časopisecké články MeSH
Ultraviolet irradiation is an effective method of virus and bacteria inactivation. The dose of UV-C light necessary for baculovirus inactivation by measurement of fluorescent GFP protein produced by baculovirus expression system after the irradiation of baculovirus culture in doses ranging from 3.5 to 42 J/m2 was determined. At a dose of 36.8 J/m2, only 0.5% of GFP-expressing cells were detected by flow cytometry and confocal microscopy. The stability of purified VP1-PCV2bCap protein produced by baculovirus expression system was analyzed after the irradiation at doses ranging from 3.5 to 19.3 J/m2. Up to the dose of 11 J/m2, no significant effect of UV-C light on the stability of VP1-PCV2bCap was detected. We observed a dose-dependent increase in VP1-PCV2bCap-specific immune response in BALB/c mice immunized by recombinant protein sterilized by irradiation in dose 11 J/m2 with no significant difference between vaccines sterilized by UV-C light and filtration. A substantial difference in the production of VP1-PCV2bCap specific IgG was observed in piglets immunized with VP1-PCV2bCap sterilized by UV-C in comparison with protein sterilized by filtration in combination with the inactivation of baculovirus by binary ethylenimine. UV-C irradiation represents an effective method for vaccine sterilization, where commonly used methods of sterilization are not possible.
- MeSH
- myši MeSH
- prasata MeSH
- rekombinantní proteiny genetika MeSH
- sterilizace MeSH
- syntetické vakcíny * MeSH
- ultrafialové záření MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rekombinantní proteiny MeSH
- syntetické vakcíny * MeSH
The tumorigenic potential of mouse polyomavirus (MPyV) has been studied for decades in cell culture models and has been mainly attributed to nonstructural middle T antigen (MT), which acts as a scaffold signal adaptor, activates Src tyrosine kinases, and possesses transforming ability. We hypothesized that MPyV could also transform mouse cells independent of MT via a Toll-like receptor 4 (TLR4)-mediated inflammatory mechanism. To this end, we investigated the interaction of MPyV with TLR4 in mouse embryonic fibroblasts (MEFs) and 3T6 cells, resulting in secretion of interleukin 6 (IL-6), independent of active viral replication. TLR4 colocalized with MPyV capsid protein VP1 in MEFs. Neither TLR4 activation nor recombinant IL-6 inhibited MPyV replication in MEFs and 3T6 cells. MPyV induced STAT3 phosphorylation through both direct and MT-dependent and indirect and TLR4/IL-6-dependent mechanisms. We demonstrate that uninfected mouse fibroblasts exposed to the cytokine environment from MPyV-infected fibroblasts upregulated the expressions of MCP-1, CCL-5, and α-SMA. Moreover, the cytokine microenvironment increased the invasiveness of MEFs and CT26 carcinoma cells. Collectively, TLR4 recognition of MPyV induces a cytokine environment that promotes the cancer-associated fibroblast (CAF)-like phenotype in noninfected fibroblasts and increases cell invasiveness.
- Klíčová slova
- CAF, IL-6, MPyV, TLR4, mouse fibroblasts, mouse polyomavirus, spheroid invasiveness,
- Publikační typ
- časopisecké články MeSH
Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1-microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.
- Klíčová slova
- VP1, histone deacetylase 6, microtubule acetylation, microtubule stabilization, microtubules, mouse polyomavirus, α-tubulin acetyltransferase 1,
- MeSH
- acetylace MeSH
- acetyltransferasy genetika metabolismus MeSH
- buněčné linie MeSH
- buněčný cyklus MeSH
- cytoplazma metabolismus MeSH
- fibroblasty virologie MeSH
- histondeacetylasa 6 genetika metabolismus MeSH
- interakce mikroorganismu a hostitele * MeSH
- mikrotubuly metabolismus virologie MeSH
- myši MeSH
- Polyomavirus genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- tubulin metabolismus MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetyltransferasy MeSH
- Hdac6 protein, mouse MeSH Prohlížeč
- histondeacetylasa 6 MeSH
- tubulin MeSH
- virové plášťové proteiny MeSH
- VP1 protein, polyomavirus MeSH Prohlížeč
The aim of this study was to develop a suitable vaccine antigen against porcine circovirus 2 (PCV2), the causative agent of post-weaning multi-systemic wasting syndrome, which causes significant economic losses in swine breeding. Chimeric antigens containing PCV2b Cap protein sequences based on the mouse polyomavirus (MPyV) nanostructures were developed. First, universal vectors for baculovirus-directed production of chimeric MPyV VLPs or pentamers of the major capsid protein, VP1, were designed for their exploitation as vaccines against other pathogens. Various strategies were employed based on: A) exposure of selected immunogenic epitopes on the surface of MPyV VLPs by insertion into a surface loop of the VP1 protein, B) insertion of foreign protein molecules inside the VLPs, or C) fusion of a foreign protein or its part with the C-terminus of VP1 protein, to form giant pentamers of a chimeric protein. We evaluated these strategies by developing a recombinant vaccine against porcine circovirus 2. All candidate vaccines induced the production of antibodies against the capsid protein of porcine circovirus after immunization of mice. The candidate vaccine, Var C, based on fusion of mouse polyomavirus and porcine circovirus capsid proteins, could induce the production of antibodies with the highest PCV2 neutralizing capacity. Its ability to induce the production of neutralization antibodies was verified after immunization of pigs. The advantage of this vaccine, apart from its efficient production in insect cells and easy purification, is that it represents a DIVA (differentiating infected from vaccinated animals) vaccine, which also induces an immune response against the mouse polyoma VP1 protein and is thus able to distinguish between vaccinated and naturally infected animals.
- MeSH
- Circovirus * genetika imunologie MeSH
- myši MeSH
- nanostruktury * MeSH
- Polyomavirus * genetika imunologie MeSH
- prasata MeSH
- rekombinantní fúzní proteiny * genetika imunologie MeSH
- Sf9 buňky MeSH
- Spodoptera MeSH
- virové plášťové proteiny * genetika imunologie MeSH
- virové vakcíny * genetika imunologie farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rekombinantní fúzní proteiny * MeSH
- virové plášťové proteiny * MeSH
- virové vakcíny * MeSH
- VP1 protein, Poliovirus MeSH Prohlížeč
BACKGROUND: For clinical applications, dendritic cells (DCs) need to be generated using GMP-approved reagents. In this study, we tested the characteristics of DCs generated in two clinical grade culture media and activated by three maturation stimuli, Poly I: C, LPS and the mixture of proinflammatory cytokines in order to identify the optimal combination of culture media and activation stimulus for the clinical use. METHOD: We tested DCs generation using two GMP-certified culture media, CellGro and RPMI+5% human AB serum and evaluated DCs morphology, viability and capapability to mature. We tested three maturation stimuli, PolyI:C, LPS and the mixture of proinflammatory cytokines consisting of IL-1, IL-6, TNF and prostaglandin E2. We evaluated the capacity of activated DCs to induce antigen-specific T cells and regulatory T lymphocytes. RESULTS: Cell culture in CellGro resulted in a higher yield of immature DCs resulting from increased number of adherent monocytes. DCs that were generated in CellGro and activated using Poly I:C were the most efficient in expanding antigen-specific T cells compared to the DCs that were generated in other media and activated using LPS or the cocktail of proinflammatory cytokines. A comparison of all tested combinations revealed that DCs that were generated in CellGro and activated using Poly I:C induced low numbers of regulatory T cells. CONCLUSION: In this study, we identified monocyte-derived DCs that were generated in CellGro and activated using Poly I:C as the most potent clinical-grade DCs for the induction of antigen-specific T cells.
- MeSH
- buněčná diferenciace účinky léků MeSH
- dendritické buňky cytologie účinky léků MeSH
- epitopy imunologie MeSH
- fenotyp MeSH
- imunoterapie metody MeSH
- klinické zkoušky jako téma MeSH
- kultivační média farmakologie MeSH
- lidé MeSH
- nádory imunologie terapie MeSH
- poly I-C farmakologie MeSH
- proliferace buněk účinky léků MeSH
- regulační T-lymfocyty cytologie účinky léků imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- epitopy MeSH
- kultivační média MeSH
- poly I-C MeSH