Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
- MeSH
- CRISPR-Cas systémy MeSH
- editace genu MeSH
- fibroblasty virologie metabolismus MeSH
- kur domácí * virologie MeSH
- kuřecí embryo MeSH
- molekulární evoluce MeSH
- nemoci drůbeže virologie genetika MeSH
- odolnost vůči nemocem genetika MeSH
- proteiny virového obalu genetika metabolismus MeSH
- ptačí leukóza * virologie genetika MeSH
- virus ptačí leukózy * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny virového obalu MeSH
BACKGROUND: Human Syncytin-1 is a placentally-expressed cell surface glycoprotein of retroviral origin. After interaction with ASCT2, its cellular receptor, Syncytin-1 triggers cell-cell fusion and formation of a multinuclear syncytiotrophoblast layer of the placenta. The ASCT2 receptor is a multi-spanning membrane protein containing a protruding extracellular part called region C, which has been suggested to be a retrovirus docking site. Precise identification of the interaction site between ASCT2 and Syncytin-1 is challenging due to the complex structure of ASCT2 protein and the background of endogenous ASCT2 gene in the mammalian genome. Chicken cells lack the endogenous background and, therefore, can be used to set up a system with surrogate expression of the ASCT2 receptor. RESULTS: We have established a retroviral heterologous chicken system for rapid and reliable assessment of ectopic human ASCT2 protein expression. Our dual-fluorescence system proved successful for large-scale screening of mutant ASCT2 proteins. Using this system, we demonstrated that progressive deletion of region C substantially decreased the amount of ASCT2 protein. In addition, we implemented quantitative assays to determine the interaction of ASCT2 with Syncytin-1 at multiple levels, which included binding of the soluble form of Syncytin-1 to ASCT2 on the cell surface and a luciferase-based assay to evaluate cell-cell fusions that were triggered by Syncytin-1. Finally, we restored the envelope function of Syncytin-1 in a replication-competent retrovirus and assessed the infection of chicken cells expressing human ASCT2 by chimeric Syncytin-1-enveloped virus. The results of the quantitative assays showed that deletion of the protruding region C did not abolish the interaction of ASCT2 with Syncytin-1. CONCLUSIONS: We present here a heterologous chicken system for effective assessment of the expression of transmembrane ASCT2 protein and its interaction with Syncytin-1. The system profits from the absence of endogenous ASCT2 background and implements the quantitative assays to determine the ASCT2-Syncytin-1 interaction at several levels. Using this system, we demonstrated that the protruding region C was essential for ASCT2 protein expression, but surprisingly, not for the interaction with Syncytin-1 glycoprotein.
- Klíčová slova
- ASCT2 (SLC1A5), Cell–cell fusion, Envelope glycoprotein, Envelope-receptor interaction, NanoLuc luciferase, Retroviral receptor, Syncytin-1,
- MeSH
- buněčné linie MeSH
- fibroblasty virologie MeSH
- fluorescence MeSH
- genové produkty env genetika metabolismus MeSH
- konfokální mikroskopie MeSH
- kur domácí MeSH
- lidé MeSH
- placenta virologie MeSH
- těhotenské proteiny genetika metabolismus MeSH
- těhotenství MeSH
- transportní systém ASC pro aminokyseliny genetika metabolismus MeSH
- vedlejší histokompatibilní antigeny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genové produkty env MeSH
- SLC1A5 protein, human MeSH Prohlížeč
- syncytin MeSH Prohlížeč
- těhotenské proteiny MeSH
- transportní systém ASC pro aminokyseliny MeSH
- vedlejší histokompatibilní antigeny MeSH
Tetherin/BST-2 is an antiviral protein that blocks the release of enveloped viral particles by linking them to the membrane of producing cells. At first, BST-2 genes were described only in humans and other mammals. Recent work identified BST-2 orthologs in nonmammalian vertebrates, including birds. Here, we identify the BST-2 sequence in domestic chicken (Gallus gallus) for the first time and demonstrate its activity against avian sarcoma and leukosis virus (ASLV). We generated a BST-2 knockout in chicken cells and showed that BST-2 is a major determinant of an interferon-induced block of ASLV release. Ectopic expression of chicken BST-2 blocks the release of ASLV in chicken cells and of human immunodeficiency virus type 1 (HIV-1) in human cells. Using metabolic labeling and pulse-chase analysis of HIV-1 Gag proteins, we verified that chicken BST-2 blocks the virus at the release stage. Furthermore, we describe BST-2 orthologs in multiple avian species from 12 avian orders. Previously, some of these species were reported to lack BST-2, highlighting the difficulty of identifying sequences of this extremely variable gene. We analyzed BST-2 genes in the avian orders Galliformes and Passeriformes and showed that they evolve under positive selection. This indicates that avian BST-2 is involved in host-virus evolutionary arms races and suggests that BST-2 antagonists exist in some avian viruses. In summary, we show that chicken BST-2 has the potential to act as a restriction factor against ASLV. Characterizing the interaction of avian BST-2 with avian viruses is important in understanding innate antiviral defenses in birds.IMPORTANCE Birds are important hosts of viruses that have the potential to cause zoonotic infections in humans. However, only a few antiviral genes (called viral restriction factors) have been described in birds, mostly because birds lack counterparts of highly studied mammalian restriction factors. Tetherin/BST-2 is a restriction factor, originally described in humans, that blocks the release of newly formed virus particles from infected cells. Recent work identified BST-2 in nonmammalian vertebrate species, including birds. Here, we report the BST-2 sequence in domestic chicken and describe its antiviral activity against a prototypical avian retrovirus, avian sarcoma and leukosis virus (ASLV). We also identify BST-2 genes in multiple avian species and show that they evolve rapidly in birds, which is an important indication of their relevance for antiviral defense. Analysis of avian BST-2 genes will shed light on defense mechanisms against avian viral pathogens.
- Klíčová slova
- avian retrovirus, chicken, restriction factor, tetherin,
- MeSH
- antigen stromálních buněk kostní dřeně genetika imunologie MeSH
- buněčné linie MeSH
- fibroblasty imunologie virologie MeSH
- Galliformes genetika imunologie virologie MeSH
- genové produkty gag - virus lidské imunodeficience genetika imunologie MeSH
- HEK293 buňky MeSH
- HIV-1 genetika imunologie MeSH
- interakce hostitele a patogenu genetika imunologie MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- Passeriformes genetika imunologie virologie MeSH
- ptačí proteiny genetika imunologie MeSH
- ptačí sarkom genetika imunologie virologie MeSH
- regulace genové exprese MeSH
- replikace viru MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- selekce (genetika) MeSH
- signální transdukce MeSH
- uvolnění viru z buňky MeSH
- viry ptačího sarkomu genetika imunologie patogenita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- antigen stromálních buněk kostní dřeně MeSH
- genové produkty gag - virus lidské imunodeficience MeSH
- ptačí proteiny MeSH
Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1-microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.
- Klíčová slova
- VP1, histone deacetylase 6, microtubule acetylation, microtubule stabilization, microtubules, mouse polyomavirus, α-tubulin acetyltransferase 1,
- MeSH
- acetylace MeSH
- acetyltransferasy genetika metabolismus MeSH
- buněčné linie MeSH
- buněčný cyklus MeSH
- cytoplazma metabolismus MeSH
- fibroblasty virologie MeSH
- histondeacetylasa 6 genetika metabolismus MeSH
- interakce mikroorganismu a hostitele * MeSH
- mikrotubuly metabolismus virologie MeSH
- myši MeSH
- Polyomavirus genetika metabolismus MeSH
- posttranslační úpravy proteinů MeSH
- tubulin metabolismus MeSH
- virové plášťové proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetyltransferasy MeSH
- Hdac6 protein, mouse MeSH Prohlížeč
- histondeacetylasa 6 MeSH
- tubulin MeSH
- virové plášťové proteiny MeSH
- VP1 protein, polyomavirus MeSH Prohlížeč
Avian leukosis virus subgroup K (ALV-K) is composed of newly emerging isolates, which, in sequence analyses, cluster separately from the well-characterized subgroups A, B, C, D, E, and J. However, it remains unclear whether ALV-K represents an independent ALV subgroup with regard to receptor usage, host range, and superinfection interference. In the present study, we examined the host range of the Chinese infectious isolate JS11C1, an ALV-K prototype, and we found substantial overlap of species that were either resistant or susceptible to ALV-A and JS11C1. Ectopic expression of the chicken tva gene in mammalian cells conferred susceptibility to JS11C1, while genetic ablation of the tva gene rendered chicken DF-1 cells resistant to infection by JS11C1. Thus, tva expression is both sufficient and necessary for JS11C1 entry. Receptor sharing was also manifested in superinfection interference, with preinfection of cells with ALV-A, but not ALV-B or ALV-J, blocking subsequent JS11C1 infection. Finally, direct binding of JS11C1 and Tva was demonstrated by preincubation of the virus with soluble Tva, which substantially decreased viral infectivity in susceptible chicken cells. Collectively, these findings indicate that JS11C1 represents a new and bona fide ALV subgroup that utilizes Tva for cell entry and binds to a site other than that for ALV-A.IMPORTANCE ALV consists of several subgroups that are particularly characterized by their receptor usage, which subsequently dictates the host range and tropism of the virus. A few newly emerging and highly pathogenic Chinese ALV strains have recently been suggested to be an independent subgroup, ALV-K, based solely on their genomic sequences. Here, we performed a series of experiments with the ALV-K strain JS11C1, which showed its dependence on the Tva cell surface receptor. Due to the sharing of this receptor with ALV-A, both subgroups were able to interfere with superinfection. Because ALV-K could become an important pathogen and a significant threat to the poultry industry in Asia, the identification of a specific receptor could help in the breeding of resistant chicken lines with receptor variants with decreased susceptibility to the virus.
- Klíčová slova
- Tva, avian leukosis virus K, host range, resistance/susceptibility to retrovirus, retrovirus receptor, superinfection interference,
- MeSH
- buněčné linie MeSH
- druhová specificita MeSH
- fibroblasty cytologie metabolismus virologie MeSH
- internalizace viru MeSH
- křeček rodu Mesocricetus MeSH
- kur domácí MeSH
- náchylnost k nemoci MeSH
- ptačí leukóza genetika metabolismus virologie MeSH
- ptačí proteiny genetika metabolismus MeSH
- virové receptory genetika metabolismus MeSH
- virus ptačí leukózy klasifikace patogenita fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ptačí proteiny MeSH
- Tva receptor MeSH Prohlížeč
- virové receptory MeSH
Antiretroviral restriction factors may play an essential role in the safety of xenotransplantation. Therefore, the present study focused on investigation of the changes in the tripartite motif-containing family (TRIM) gene expression in normal human dermal fibroblasts with and without lipopolysaccharide stimulation in response to porcine endogenous retrovirus infection. Analysis of the expression profile of TRIMs was performed using oligonucleotide microarrays and QRT-PCR. Nine (TRIM1, TRIM2, TRIM5, TRIM14, TRIM16, TRIM18, TRIM22, TRIM27 and TRIM31) statistically significantly differentially expressed genes were found (P < 0.05, one-way ANOVA). In conclusion, comprehensive analysis of retroviral restriction factor gene expression in human dermal fibroblasts before and after porcine endogenous retrovirus infection with and without LPS stimulation may suggest association of the selected TRIMs with antiretroviral activity.
- MeSH
- aminokyselinové motivy MeSH
- endogenní retroviry fyziologie MeSH
- fibroblasty metabolismus virologie MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- reprodukovatelnost výsledků MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- škára patologie MeSH
- stanovení celkové genové exprese * MeSH
- Sus scrofa MeSH
- transportní proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- transportní proteiny MeSH
Oncolytic viruses infect, replicate in, and lyse tumour cells but spare the normal ones. One of oncolytic viruses is a naturally occurring replication-competent reovirus (RV), which preferentially kills tumour cells with activated Ras signaling pathways. The aim of this study was to survey effects of RV on brain tumour-derived cells in vitro under hypoxic conditions since hypoxia causes resistance to radio- and chemotherapy. This study demonstrates that RV replicates preferentially in tumour cells and that the virus is able to overcome cellular adaptation to hypoxia and infect and kill hypoxic tumour cells. RV can both replicate in hypoxic tumour microenvironment and cause the cytopathic effect, subsequently inducing cell death. We found that a large proportion of cells are killed in hypoxia (1% O₂) by caspase-independent mechanisms. Furthermore, we learned that the cell death induced by RV in hypoxic conditions is not caused by autophagy.
- MeSH
- apoptóza účinky léků MeSH
- autofagie účinky léků MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- fibroblasty účinky léků patologie virologie MeSH
- hypoxie buňky účinky léků MeSH
- kaspasa 3 metabolismus MeSH
- kyslík farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- onkolytická viroterapie * MeSH
- onkolytické viry účinky léků fyziologie MeSH
- Reoviridae účinky léků fyziologie MeSH
- reovirové infekce patologie virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa MeSH
- kaspasa 3 MeSH
- kyslík MeSH
Minor structural proteins of mouse polyomavirus (MPyV) are essential for virus infection. To study their properties and possible contributions to cell death induction, fusion variants of these proteins, created by linking enhanced green fluorescent protein (EGFP) to their C- or N-termini, were prepared and tested in the absence of other MPyV gene products, namely the tumor antigens and the major capsid protein, VP1. The minor proteins linked to EGFP at their C-terminus (VP2-EGFP, VP3-EGFP) were found to display properties similar to their nonfused, wild-type versions: they killed mouse 3T3 cells quickly when expressed individually. Carrying nuclear localization signals at their common C-terminus, the minor capsid proteins were detected in the nucleus. However, a substantial subpopulation of both VP2 and VP3 proteins, as well as of the fusion proteins VP2-EGFP and VP3-EGFP, was detected in the cytoplasm, co-localizing with intracellular membranes. Truncated VP3 protein, composed of 103 C-terminal amino acids, exhibited reduced affinity for intracellular membranes and cytotoxicity. Biochemical studies proved each of the minor proteins to be a very potent inducer of apoptosis, which was dependent on caspase activation. Immuno-electron microscopy showed the minor proteins to be associated with damaged membranes of the endoplasmic reticulum, nuclear envelope and mitochondria as soon as 5 h post-transfection. Analysis of apoptotic markers and cell death kinetics in cells transfected with the wild-type MPyV genome and the genome mutated in both VP2 and VP3 translation start codons revealed that the minor proteins contribute moderately to apoptotic processes in the late phase of infection and both are dispensable for cell destruction at the end of the virus replication cycle.
- MeSH
- apoptóza účinky léků MeSH
- buněčné linie MeSH
- časové faktory MeSH
- fibroblasty virologie MeSH
- myši MeSH
- plazmidy genetika MeSH
- polyomavirové infekce patologie MeSH
- Polyomavirus * MeSH
- virové plášťové proteiny genetika metabolismus farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové plášťové proteiny MeSH
- VP2 protein, Polyomavirus MeSH Prohlížeč
Polyomavirus mutants E, Q and H, expressing non-myristylated VP2, were generated by replacing the N-terminal glycine residue with glutamic acid, glutamine or histidine, respectively. Viruses mutated in either VP2 or VP3 translation initiation codons were also prepared. All mutated genomes, when transfected into murine host cells, gave rise to viral particles. Infectivity of VP2- and VP3- viruses, as measured by the number of cells expressing viral antigens, was dramatically diminished, indicative of defects in the early stages of infection. In contrast, the absence of a myristyl moiety on VP2 did not substantially affect the early steps of virus infection. No differences in numbers of cells expressing early or late viral antigens were observed between wild-type (wt) and E or Q myr- viruses during the course of a life cycle. Furthermore, no delay in virus DNA replication was detected. However, when cells were left for longer in culture, the number of infected cells, measured by typical virus bursts, was much lower when mutant rather than wt genomes were used. In situ, cell fractionation studies revealed differences in the interaction of viral particles with host cell structures. The infectivity of mutants was affected not only by loss of the myristyl group on VP2, but also, and to a greater extent, by alterations of the N-terminal amino acid composition.
- MeSH
- antigeny virové biosyntéza MeSH
- buněčné linie MeSH
- DNA virů biosyntéza MeSH
- fibroblasty virologie MeSH
- kapsida genetika MeSH
- kodon iniciační MeSH
- kyselina myristová metabolismus MeSH
- mutace MeSH
- myši MeSH
- Polyomavirus genetika imunologie fyziologie MeSH
- replikace DNA MeSH
- replikace viru MeSH
- transfekce MeSH
- virové plášťové proteiny MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- antigeny virové MeSH
- DNA virů MeSH
- kodon iniciační MeSH
- kyselina myristová MeSH
- virové plášťové proteiny MeSH
- VP2 protein, Polyomavirus MeSH Prohlížeč
CpG islands are important in the protection of adjacent housekeeping genes from de novo DNA methylation and for keeping them in a transcriptionally active state. However, little is known about their capacity to protect heterologous genes and assure position-independent transcription of adjacent transgenes or retroviral vectors. To tackle this question, we have used the mouse aprt CpG island to flank a Rous sarcoma virus (RSV)-derived reporter vector and followed the transcriptional activity of integrated vectors. RSV is an avian retrovirus which does not replicate in mammalian cells because of several blocks at all levels of the replication cycle. Here we show that our RSV-derived reporter proviruses linked to the mouse aprt gene CpG island remain undermethylated and keep their transcriptional activity after stable transfection into both avian and nonpermissive mammalian cells. This effect is most likely caused by the protection from de novo methylation provided by the CpG island and not by enhancement of the promoter strength. Our results are consistent with previous finding of CpG islands in proximity to active but not inactive proviruses and support further investigation of the protection of the gene transfer vectors from DNA methylation.
- MeSH
- adeninfosforibosyltransferasa genetika MeSH
- buněčné linie virologie MeSH
- CpG ostrůvky * MeSH
- defektní viry genetika MeSH
- DNA virů chemie genetika MeSH
- DNA-(cytosin-5-)methyltransferasa metabolismus MeSH
- experimentální sarkom genetika virologie MeSH
- fibroblasty virologie MeSH
- genetická transkripce * MeSH
- genetické vektory genetika fyziologie MeSH
- integrace viru MeSH
- koncové repetice MeSH
- křečci praví MeSH
- křeček rodu Mesocricetus MeSH
- kuřecí embryo MeSH
- metylace DNA MeSH
- myši MeSH
- proviry genetika MeSH
- regulace exprese virových genů * MeSH
- replikace viru MeSH
- reportérové geny MeSH
- umlčování genů * MeSH
- viry ptačího sarkomu genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- kuřecí embryo MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- adeninfosforibosyltransferasa MeSH
- DNA virů MeSH
- DNA-(cytosin-5-)methyltransferasa MeSH