The global pandemic of SARS-CoV-2 has highlighted the necessity for innovative therapeutic solutions. This research presents a new formulation utilising the metal-organic framework MIL-101(Al)-NH2, which is loaded with hypericin, aimed at addressing viral and bacterial challenges. Hypericin, recognised for its antiviral and antibacterial efficacy, was encapsulated to mitigate its hydrophobicity, improve bioavailability, and utilise its photodynamic characteristics. The MIL-101(Al)-NH2 Hyp complex was synthesised, characterised, and evaluated for its biological applications for the first time. The main objective of this study was to demonstrate the multimodal potential of such a construct, in particular the effect on SARS-CoV-2 protein levels and its interaction with cells. Both in vitro and in vivo experiments demonstrated the effective transport of hypericin to cells that express ACE2 receptors, thereby mimicking mechanisms of viral entry. In addition, hypericin found in the mitochondria showed selective phototoxicity when activated by light, leading to a decrease in the metabolic activity of glioblastoma cells. Importantly, the complex also showed antibacterial efficacy by selectively targeting Gram-positive Staphylococcus epidermidis compared to Gram-negative Escherichia coli under photodynamic therapy (PDT) conditions. To our knowledge, this study was the first to demonstrate the interaction between hypericin, MIL-101(Al)-NH2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which inhibits cellular uptake and colocalises with ACE2-expressing cells. Therefore, the dual functionality of the complex - targeting the viral RBD and the antibacterial effect via PDT - emphasises its potential to mitigate complications of viral infections, such as secondary bacterial infections. In summary, these results suggest that MIL-101(Al)-NH2 Hyp is a promising multifunctional therapeutic agent for antiviral and antibacterial applications, potentially contributing to the improvement of COVID-19 treatment protocols and the treatment of co-infections.
- Klíčová slova
- ACE2 receptors, Hypericin, MIL-101(Al)–NH(2), Photodynamic therapy, RBD spike protein, Selectivity,
- MeSH
- anthraceny MeSH
- antibakteriální látky * farmakologie chemie MeSH
- antivirové látky * farmakologie chemie MeSH
- COVID-19 virologie MeSH
- farmakoterapie COVID-19 * MeSH
- fotochemoterapie MeSH
- fotosenzibilizující látky farmakologie chemie MeSH
- glykoprotein S, koronavirus * metabolismus chemie MeSH
- lidé MeSH
- perylen * analogy a deriváty farmakologie chemie MeSH
- porézní koordinační polymery * farmakologie chemie MeSH
- SARS-CoV-2 * účinky léků metabolismus MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthraceny MeSH
- antibakteriální látky * MeSH
- antivirové látky * MeSH
- fotosenzibilizující látky MeSH
- glykoprotein S, koronavirus * MeSH
- hypericin MeSH Prohlížeč
- MIL-101 MeSH Prohlížeč
- perylen * MeSH
- porézní koordinační polymery * MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
OBJECTIVE: An observational study was conducted from 2021 to 2022 to track the dynamics of the production of IgG antibody against the SARS-CoV-2 S protein in individuals vaccinated with two doses of the Pfizer-BioNTech mRNA vaccine BNT162b2 (Comirnaty). The study included a group of volunteers without any previous signs of SARS-CoV-2 infection as well as a group with a history of natural COVID-19 infection. The primary objective was to monitor antibody levels up to 12 months after the second dose and determine the proportion of vaccinated individuals who underwent seroconversion. The study also evaluated cases of vaccine failure within 13 months post-vaccination. METHODS: Before the vaccination began, participants had laboratory tests for IgG antibodies against the SARS-CoV-2 S protein, and their medical history related to COVID-19 was taken. Based on negative test results, a cohort of immunologically naïve individuals was formed and subsequently vaccinated with two doses of BNT162b2 (Comirnaty). Venous blood samples were collected at six time points: before the first dose, 2-3 weeks after the first dose, one month after the second dose, 3-4 months after the second dose, 6 months after the second dose, and 12 months after the second dose. A supplementary cohort included volunteers with positive antibody findings or confirmed COVID-19 infection. In some of these individuals, the dynamics of post-vaccination antibody response was also monitored. Participants filled out monthly questionnaires about respiratory infection symptoms to detect vaccine failure. RESULTS: The study included 166 participants who did not have SARS-CoV-2 S protein antibodies prior to vaccination. The median age was 52 years, with a higher proportion of women (71.1%). After the first and second doses of the vaccine, antibody levels showed a significant increase, followed by a gradual decline over 12 months. Seroconversion occurred in all participants except for one immunosuppressed individual. The vaccine failure rate against COVID-19 within 12 months was 13.3%. The second cohort included 60 participants with prior SARS-CoV-2 infection. In this group, post-vaccination antibody levels increased significantly, more than in individuals without prior infection. The second dose did not result in further statistically significant increase in antibody levels for this cohort. CONCLUSIONS: The study confirmed that the BNT162b2 mRNA vaccine induces a strong antibody response, with the majority of participants experiencing seroconversion after the first dose. Older individuals exhibited a lower antibody response, highlighting the importance of booster doses. In individuals with prior SARS-CoV-2 infection, antibody levels were significantly higher after the first vaccine dose than in naïve individuals. These findings add to understanding antibody response dynamics and suggest the need for further research focused on optimizing vaccination schedules.
- Klíčová slova
- COVID-19, IgG antibodies against SARS-CoV-2 S protein, mRNA vaccine BNT162b2, seroconversion,
- MeSH
- COVID-19 * prevence a kontrola imunologie MeSH
- dospělí MeSH
- glykoprotein S, koronavirus imunologie MeSH
- imunoglobulin G * krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- protilátky virové * krev MeSH
- SARS-CoV-2 * imunologie MeSH
- sérokonverze MeSH
- tvorba protilátek MeSH
- vakcína BNT162 * imunologie aplikace a dávkování MeSH
- vakcíny proti COVID-19 * imunologie aplikace a dávkování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- imunoglobulin G * MeSH
- protilátky virové * MeSH
- vakcína BNT162 * MeSH
- vakcíny proti COVID-19 * MeSH
Syncytin-1 and Syncytin-2 are envelope glycoproteins encoded by human endogenous retroviruses that have been exapted for the fusion of cytotrophoblast cells into syncytiotrophoblasts during placental development. Pregnancy complications like preeclampsia are associated with altered expression of interferon-stimulated genes, including guanylate-binding protein 5 (GBP5). Here, we show that misdirected antiviral activity of GBP5 impairs processing and activation of Syncytin-1. In contrast, the proteolytic activation of Syncytin-2 is not affected by GBP5, and its fusogenic activity is only modestly reduced. Mechanistic analyses revealed that Syncytin-1 is mainly cleaved by the GBP5 target furin, whereas Syncytin-2 is also efficiently processed by the proprotein convertase subtilisin/kexin type 7 (PCSK7) and thus resistant to GBP5-mediated restriction. Mutational analyses mapped PCSK7 processing of Syncytin-2 to a leucine residue upstream of the polybasic cleavage site. In summary, we identified an innate immune mechanism that impairs the activity of a co-opted endogenous retroviral envelope protein during pregnancy and may potentially contribute to the pathogenesis of pregnancy disorders.
- MeSH
- furin metabolismus MeSH
- fúze buněk MeSH
- genové produkty env metabolismus genetika MeSH
- lidé MeSH
- placenta * metabolismus cytologie MeSH
- proteiny vázající GTP * metabolismus genetika MeSH
- těhotenské proteiny * metabolismus genetika MeSH
- těhotenství MeSH
- trofoblasty * metabolismus cytologie MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- furin MeSH
- genové produkty env MeSH
- proteiny vázající GTP * MeSH
- syncytin MeSH Prohlížeč
- těhotenské proteiny * MeSH
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an RNA virus responsible for coronavirus disease 2019 (COVID-19). While SARS-CoV-2 primarily targets the lungs and airways, it can also infect other organs, including the central nervous system (CNS). The aim of this study was to investigate whether the choroid plexus could serve as a potential entry site for SARS-CoV-2 into the brain. Tissue samples from 24 deceased COVID-19-positive individuals were analyzed. Reverse transcription real-time PCR (RT-qPCR) was performed on selected brain regions, including the choroid plexus, to detect SARS-CoV-2 viral RNA. Additionally, immunofluorescence staining and confocal microscopy were used to detect and localize two characteristic proteins of SARS-CoV-2: the spike protein S1 and the nucleocapsid protein. RT-qPCR analysis confirmed the presence of SARS-CoV-2 viral RNA in the choroid plexus. Immunohistochemical staining revealed viral particles localized in the epithelial cells of the choroid plexus, with the spike protein S1 detected in the late endosomes. Our findings suggest that the blood-cerebrospinal fluid (B-CSF) barrier in the choroid plexus serves as a route of entry for SARS-CoV-2 into the CNS. This study contributes to the understanding of the mechanisms underlying CNS involvement in COVID-19 and highlights the importance of further research to explore potential therapeutic strategies targeting this entry pathway.
- Klíčová slova
- COVID‐19, SARS‐CoV‐2, blood‐cerebrospinal fluid barrier, choroid plexus, neuroinvasion,
- MeSH
- COVID-19 * virologie patologie MeSH
- dospělí MeSH
- fosfoproteiny MeSH
- glykoprotein S, koronavirus metabolismus genetika MeSH
- hematoencefalická bariéra * virologie MeSH
- internalizace viru * MeSH
- koronavirové nukleokapsidové proteiny MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek virologie MeSH
- plexus chorioideus * virologie patologie MeSH
- RNA virová genetika MeSH
- SARS-CoV-2 * fyziologie genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoproteiny MeSH
- glykoprotein S, koronavirus MeSH
- koronavirové nukleokapsidové proteiny MeSH
- nucleocapsid phosphoprotein, SARS-CoV-2 MeSH Prohlížeč
- RNA virová MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Severe fever with thrombocytopenia syndrome (SFTS) is a significant public health concern, with a high fatality rate in humans and cats. In this study, we explored the genetic determinants that contribute to the different virulence of SFTS virus (SFTSV) based on Tk-F123 and Ng-F264 strains isolated from cats. Tk-F123 was 100% lethal in type I interferon receptor-knockout mice, whereas Ng-F264 exhibited no fatality. We identified a pair of amino acid residues in the Gc protein, glycine and serine, at residues 581 and 934, respectively, derived from Tk-F123, leading to a fatal infection. Those in Ng-F264 were arginine and asparagine. These results suggest that this pair of residues affects the Gc protein function and regulates SFTSV virulence. Our findings provide useful clues for the elucidation of viral pathogenicity and the development of effective live-attenuated vaccines and antiviral strategies.
- Klíčová slova
- Gc protein, Mouse model, SFTS virus, Virulence,
- MeSH
- glykoproteiny genetika metabolismus MeSH
- infekce viry z čeledi Bunyaviridae virologie MeSH
- kočky MeSH
- lidé MeSH
- myši knockoutované * MeSH
- myši MeSH
- Phlebovirus * genetika patogenita izolace a purifikace MeSH
- proteiny virového obalu genetika metabolismus MeSH
- receptor interferonu alfa-beta genetika MeSH
- těžká forma horečky s trombocytopenickým syndromem * virologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykoproteiny MeSH
- proteiny virového obalu MeSH
- receptor interferonu alfa-beta MeSH
Despite the lower virulence of current SARS-CoV-2 variants and high rates of vaccinated and previously infected subjects, COVID-19 remains a persistent threat in kidney transplant recipients (KTRs). This study evaluated the parameters of anti-SARS-CoV-2 antibody production in 120 KTRs. The production of neutralizing antibodies in KTRs, following booster vaccination with the mRNA vaccine BNT162b2, was significantly decreased and their decline was faster than in healthy subjects. Factors predisposing to the downregulation of anti-SARS-CoV-2 neutralizing antibodies included age, lower estimated glomerular filtration rate, and a full dose of mycophenolate mofetil. Neutralizing antibodies correlated with those targeting the SARS-CoV-2 receptor binding domain (RBD), SARS-CoV-2 Spike trimmer, total SARS-CoV-2 S1 protein, as well as with antibodies to the deadly SARS-CoV-1 virus. No cross-reactivity was found with antibodies against seasonal coronaviruses. KTRs exhibited lower postvaccination production of neutralizing antibodies against SARS-CoV-2; however, the specificity of their humoral response did not differ compared to healthy subjects.
- Klíčová slova
- Antibodies, COVID-19, Kidney transplantation, SARS-CoV-2, Vaccination,
- MeSH
- COVID-19 * imunologie prevence a kontrola MeSH
- dospělí MeSH
- glykoprotein S, koronavirus imunologie MeSH
- humorální imunita MeSH
- lidé středního věku MeSH
- lidé MeSH
- neutralizující protilátky * krev imunologie MeSH
- příjemce transplantátu * MeSH
- protilátky virové * krev imunologie MeSH
- SARS-CoV-2 * imunologie MeSH
- sekundární imunizace MeSH
- senioři MeSH
- transplantace ledvin * škodlivé účinky MeSH
- vakcína BNT162 imunologie aplikace a dávkování MeSH
- vakcíny proti COVID-19 imunologie aplikace a dávkování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- neutralizující protilátky * MeSH
- protilátky virové * MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcína BNT162 MeSH
- vakcíny proti COVID-19 MeSH
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart. Highlighting SARS-CoV-2's broad organ tropism, especially its effects on cardiomyocytes via ACE2 and TMPRSS2, the review addresses how these interactions exacerbate cardiovascular issues in patients with pre-existing conditions such as diabetes and hypertension. Additionally, we assess both direct and indirect mechanisms of virus-induced cardiac damage, including myocarditis, arrhythmias, and long-term complications such as 'long COVID'. This review underscores the complexity of SARS-CoV-2's impact on the heart, emphasizing the need for ongoing research to fully understand its long-term effects on cardiovascular health. Key words: COVID-19, Heart, ACE2, Spike protein, Cardiomyocytes, Myocarditis, Long COVID.
- MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- COVID-19 * metabolismus komplikace virologie epidemiologie MeSH
- glykoprotein S, koronavirus * metabolismus MeSH
- internalizace viru MeSH
- kardiomyocyty virologie metabolismus MeSH
- lidé MeSH
- nemoci srdce * virologie metabolismus MeSH
- SARS-CoV-2 * patogenita metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- glykoprotein S, koronavirus * MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a respiratory virus that emerged in late 2019 and rapidly spread worldwide, causing the COVID-19 pandemic. The spike glycoprotein (S protein) plays a crucial role in viral target recognition and entry by interacting with angiotensin, converting enzyme 2 (ACE2), the functional receptor for the virus, via its receptor binding domain (RBD). The RBD availability for this interaction can be influenced by external factors, such as fatty acids. Linoleic acid (LA), a free fatty acid, has been shown to bind the S protein, modulating the viral infection by reducing initial target recognition. LA interacts with the fatty acid binding pocket (FABP), a potential drug target against SARS-CoV-2. In this study, we aimed to exploit the FABP as a drug target by performing a docking-based virtual screening with a library of commercially available, drug-like compounds. The virtual hits identified were then assessed in in vitro assays for the inhibition of the virus-host interaction and cytotoxicity. Binding assays targeting the spike-ACE2 interaction identified multiple compounds with inhibitory activity and low cytotoxicity.
- Klíčová slova
- SARS-CoV-2, in vitro assays, spike glycoprotein, virtual screening,
- MeSH
- angiotensin-konvertující enzym 2 metabolismus chemie MeSH
- antivirové látky * farmakologie chemie MeSH
- COVID-19 virologie metabolismus MeSH
- farmakoterapie COVID-19 MeSH
- glykoprotein S, koronavirus * metabolismus chemie antagonisté a inhibitory MeSH
- internalizace viru účinky léků MeSH
- kyselina linolová metabolismus chemie MeSH
- lidé MeSH
- proteiny vázající mastné kyseliny metabolismus chemie MeSH
- SARS-CoV-2 * metabolismus účinky léků MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ACE2 protein, human MeSH Prohlížeč
- angiotensin-konvertující enzym 2 MeSH
- antivirové látky * MeSH
- glykoprotein S, koronavirus * MeSH
- kyselina linolová MeSH
- proteiny vázající mastné kyseliny MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
INTRODUCTION AND OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the nasal cavity, penetrates the nasal epithelial cells through the interaction of its spike protein with the host cell receptor angiotensin-converting enzyme 2 (ACE2) and then triggers a cytokine storm. We aimed to assess the biocompatibility of fullerenol nanoparticles C60(OH)40 and ectoine, and to document their effect on the protection of primary human nasal epithelial cells (HNEpCs) against the effects of interaction with the fragment of virus - spike protein. This preliminary research is the first step towards the construction of a intranasal medical device with a protective, mechanical function against SARS-CoV-2 similar to that of personal protective equipment (eg masks). METHODS: We used HNEpCs and the full-length spike protein from SARS-CoV-2 to mimic the first stage of virus infection. We assessed cell viability with the XTT assay and a spectrophotometer. May-Grünwald Giemsa and periodic acid-Schiff staining served to evaluate HNEpC morphology. We assessed reactive oxygen species (ROS) production by using 2',7'-dichlorofluorescin diacetate and commercial kit. Finally, we employed reverse transcription polymerase chain reaction, Western blotting and confocal microscopy to determine the expression of angiotensin-converting enzyme 2 (ACE2) and inflammatory cytokines. RESULTS: There was normal morphology and unchanged viability of HNEpCs after incubation with 10 mg/L C60(OH)40, 0.2% ectoine or their composite for 24 h. The spike protein exerted cytotoxicity via ROS production. Preincubation with the composite protected HNEpCs against the interaction between the spike protein and the host membrane and prevented the production of key cytokines characteristic of severe coronavirus disease 2019, including interleukin 6 and 8, monocyte chemotactic protein 1 and 2, tissue inhibitor of metalloproteinases 2 and macrophage colony-stimulating factor. CONCLUSION: In the future, the combination of fullerenol and ectoine may be used to prevent viral infections as an intranasal medical device for people with reduced immunity and damaged mucous membrane.
- Klíčová slova
- ACE2, cytokine storm, ectoine, nasal epithelium, polyhydroxylated fullerene, spike,
- MeSH
- aminokyseliny diaminové MeSH
- angiotensin-konvertující enzym 2 metabolismus MeSH
- COVID-19 * prevence a kontrola MeSH
- cytokiny metabolismus MeSH
- epitelové buňky * účinky léků virologie MeSH
- fullereny * farmakologie chemie MeSH
- glykoprotein S, koronavirus * metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- nanočástice * chemie MeSH
- nosní sliznice účinky léků cytologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- SARS-CoV-2 * účinky léků MeSH
- syndrom uvolnění cytokinů * prevence a kontrola MeSH
- viabilita buněk * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny diaminové MeSH
- angiotensin-konvertující enzym 2 MeSH
- cytokiny MeSH
- ectoine MeSH Prohlížeč
- fullerenol MeSH Prohlížeč
- fullereny * MeSH
- glykoprotein S, koronavirus * MeSH
- reaktivní formy kyslíku MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Syncytin-1, a human fusogenic protein of retroviral origin, is crucial for placental syncytiotrophoblast formation. To mediate cell-to-cell fusion, Syncytin-1 requires specific interaction with its cognate receptor. Two trimeric transmembrane proteins, Alanine, Serine, Cysteine Transporters 1 and 2 (ASCT1 and ASCT2), were suggested and widely accepted as Syncytin-1 cellular receptors. To quantitatively assess the individual contributions of human ASCT1 and ASCT2 to the fusogenic activity of Syncytin-1, we developed a model system where the ASCT1 and ASCT2 double knockout was rescued by ectopic expression of either ASCT1 or ASCT2. We demonstrated that ASCT2 was required for Syncytin-1 binding, cellular entry, and cell-to-cell fusion, while ASCT1 was not involved in this receptor interaction. We experimentally validated the ASCT1-ASCT2 heterotrimers as a possible explanation for the previous misidentification of ASCT1 as a receptor for Syncytin-1. This redefinition of receptor specificity is important for proper understanding of Syncytin-1 function in normal and pathological pregnancy.
- Klíčová slova
- Syncytin-1, cell-to-cell fusion, endogenous retrovirus, placenta, viral receptor,
- MeSH
- antigeny CD98 - těžký řetězec MeSH
- fúze buněk * MeSH
- genové produkty env * metabolismus genetika MeSH
- lidé MeSH
- placenta * metabolismus MeSH
- těhotenské proteiny * metabolismus genetika MeSH
- těhotenství MeSH
- transportní systém ASC pro aminokyseliny * metabolismus genetika MeSH
- transportní systémy pro neutrální aminokyseliny metabolismus genetika MeSH
- trofoblasty metabolismus cytologie MeSH
- vedlejší histokompatibilní antigeny metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD98 - těžký řetězec MeSH
- genové produkty env * MeSH
- SLC1A5 protein, human MeSH Prohlížeč
- SLC3A2 protein, human MeSH Prohlížeč
- syncytin MeSH Prohlížeč
- těhotenské proteiny * MeSH
- transportní systém ASC pro aminokyseliny * MeSH
- transportní systémy pro neutrální aminokyseliny MeSH
- vedlejší histokompatibilní antigeny MeSH