Nejvíce citovaný článek - PubMed ID 16338977
Early studies have shown that erythrocytes have caspase-3 and caspase-8 and are capable of dying through an apoptotic-like cell death triggered by Ca2+ ionophores. This cell death is associated with apoptosis-like morphological signs, including cell shrinkage, membrane blebbing, and phosphatidylserine externalization. To emphasize that mature erythrocytes don't have the apoptotic mitochondrial machinery and distinguish this unique cell death modality from apoptosis, it was named "eryptosis". Over recent decades, our knowledge of eryptosis has been significantly expanded, providing more insights into the uniqueness of cell death pathways in erythrocytes. In this review, we aim to summarize our current understanding of eryptosis, formulate the nomenclature and guidelines to interpret results of eryptosis studies, provide a synopsis of morphological and biochemical features of eryptosis, and highlight the role of eryptosis in health and disease, including its druggability.
- MeSH
- apoptóza MeSH
- eryptóza * účinky léků fyziologie MeSH
- erytrocyty * metabolismus účinky léků cytologie MeSH
- lidé MeSH
- terminologie jako téma MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vápník MeSH
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
- Klíčová slova
- Apoptosis, Cell death, Ferroptosis, Necroptosis, Red blood cell,
- MeSH
- apoptóza * MeSH
- buněčná smrt MeSH
- eryptóza MeSH
- erytrocyty * metabolismus cytologie MeSH
- ferroptóza MeSH
- lidé MeSH
- nekroptóza MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
- Klíčová slova
- Ca2+ signaling, Casein kinase 1α, Caspase-3, Regulated cell death, p38 MAPK,
- MeSH
- apoptóza * MeSH
- buněčná smrt MeSH
- eryptóza * MeSH
- erytrocyty metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fosfatidylseriny MeSH
- reaktivní formy kyslíku MeSH
- vápník MeSH
Costunolide, a natural sesquiterpene lactone, has multiple pharmacological activities such as neuroprotection or induction of apoptosis and eryptosis. However, the effects of costunolide on pro-survival factors and enzymes in human erythrocytes, e.g. glutathione and glucose-6-phosphate dehydrogenase (G6PDH) respectively, have not been studied yet. Our aim was to determine the mechanisms underlying costunolide-induced eryptosis and to reverse this process. Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry, and intracellular glutathione [GSH]i from high performance liquid chromatography. The oxidized status of intracellular glutathione and enzyme activities were measured by spectrophotometry. Treatment of erythrocytes with costunolide dose-dependently enhanced the percentage of annexin-V-binding cells, decreased the cell volume, depleted [GSH]i and completely inhibited G6PDH activity. The effects of costunolide on annexin-V-binding and cell volume were significantly reversed by pre-treatment of erythrocytes with the specific PKC-α inhibitor chelerythrine. The latter, however, had no effect on costunolide-induced GSH depletion. Costunolide induces eryptosis, depletes [GSH]i and inactivates G6PDH activity. Furthermore, our study reveals an inhibitory effect of chelerythrine on costunolide-induced eryptosis, indicating a relationship between costunolide and PKC-α. In addition, chelerythrine acts independently of the GSH depletion. Understanding the mechanisms of G6PDH inhibition accompanied by GSH depletion should be useful for development of anti-malarial therapeutic strategies or for synthetic lethality-based approaches to escalate oxidative stress in cancer cells for their sensitization to chemotherapy and radiotherapy.
- Klíčová slova
- Chelerythrine, Costunolide, Eryptosis, Glucose-6-phosphate dehydrogenase (G6PDH), Glutathione, Phosphatidylserine exposure,
- MeSH
- apoptóza účinky léků MeSH
- benzofenantridiny farmakologie MeSH
- eryptóza účinky léků genetika MeSH
- erytrocyty účinky léků patologie MeSH
- glukosa-6-fosfátdehydrogenasa antagonisté a inhibitory genetika MeSH
- glutathion genetika MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- oxidační stres účinky léků MeSH
- proteinkinasa C-alfa antagonisté a inhibitory genetika MeSH
- reaktivní formy kyslíku MeSH
- seskviterpeny farmakologie MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- benzofenantridiny MeSH
- chelerythrine MeSH Prohlížeč
- costunolide MeSH Prohlížeč
- G6PD protein, human MeSH Prohlížeč
- glukosa-6-fosfátdehydrogenasa MeSH
- glutathion MeSH
- inhibitory enzymů MeSH
- PRKCA protein, human MeSH Prohlížeč
- proteinkinasa C-alfa MeSH
- reaktivní formy kyslíku MeSH
- seskviterpeny MeSH
- vápník MeSH