Regulated cell death Dotaz Zobrazit nápovědu
Polymorphonuclear neutrophils (PMNs) play a key role in host defense. However, their massive accumulation at the site of inflammation can delay regenerative healing processes and can initiate pathological inflammatory processes. Thus, the efficient clearance of PMNs mediated by the induction of regulated cell death is a key process preventing the development of these pathological conditions. Myeloperoxidase (MPO), a highly abundant enzyme in PMN granules, primarily connected with PMN defense machinery, is suggested to play a role in PMN-regulated cell death. However, the contribution of MPO to the mechanisms of PMN cell death remains incompletely characterized. Herein, the process of the cell death of mouse PMNs induced by three different stimuli - phorbol 12-myristate 13-acetate (PMA), opsonized streptococcus (OST), and N-formyl-met-leu-phe (fMLP) - was investigated. MPO-deficient PMNs revealed a significantly decreased rate of cell death characterized by phosphatidylserine surface exposure and cell membrane permeabilization. An inhibitor of MPO activity, 4-aminobenzoic acid hydrazide, did not exhibit a significant effect on PMA-induced cell death compared to MPO deficiency. Interestingly, only the limited activation of markers related to apoptotic cell death was observed (e.g. caspase 8 activation, Bax expression) and they mostly did not correspond to phosphatidylserine surface exposure. Furthermore, a marker characterizing autophagy, cleavage of LC3 protein, as well as histone H3 citrullination and its surface expression was observed. Collectively, the data show the ability of MPO to modulate the life span of PMNs primarily through the potentiation of cell membrane permeabilization and phosphatidylserine surface exposure.
- Klíčová slova
- annexin V, apoptosis, cell death, inflammation, myeloperoxidase, neutrophils,
- MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neutrofily metabolismus patologie MeSH
- peroxidasa nedostatek metabolismus MeSH
- regulovaná buněčná smrt MeSH
- zánět metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peroxidasa MeSH
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
- Klíčová slova
- Apoptosis, Cell death, Ferroptosis, Necroptosis, Red blood cell,
- MeSH
- apoptóza MeSH
- buněčná smrt MeSH
- eryptóza * MeSH
- erytrocyty * metabolismus cytologie MeSH
- ferroptóza MeSH
- lidé MeSH
- nekroptóza MeSH
- regulovaná buněčná smrt MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanomedicine is a fast-growing field of nanotechnology. One of the major obstacles for a wider use of nanomaterials for medical application is the lack of standardized toxicity screening protocols for assessing the safety of newly synthesized nanomaterials. In this review, we focus on less frequently studied nanomaterials-induced regulated cell death (RCD) modalities, including eryptosis, necroptosis, pyroptosis, and ferroptosis, as a tool for in vitro nanomaterials safety evaluation. We summarize the latest insights into the mechanisms that mediate these RCDs in response to nanomaterials exposure. Comprehensive data from reviewed studies suggest that ROS (reactive oxygen species) overproduction and ROS-mediated pathways play a central role in nanomaterials-induced RCDs activation. On the other hand, studies also suggest that individual properties of nanomaterials, including size, shape, or surface charge, could determine specific toxicity pathways with consequent RCD induction as well. We anticipate that the evaluation of RCDs can become one of the mechanism-based screening methods in nanotoxicology. In addition to the toxicity assessment, evaluation of necroptosis-, pyroptosis-, and ferroptosis-promoting capacity of nanomaterials could simultaneously provide useful information for specific medical applications as could be their anti-tumor potential. Moreover, a detailed understanding of molecular mechanisms driving nanomaterials-mediated induction of immunogenic RCDs will substantially aid novel anti-tumor nanodrugs development.
- Klíčová slova
- Nanotoxicology, nanoparticles, reactive oxygen species, regulated cell death,
- MeSH
- lidé MeSH
- nádory * MeSH
- nanomedicína MeSH
- nanostruktury * toxicita MeSH
- nanotechnologie MeSH
- nekroptóza MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- Klíčová slova
- biofilm, differentiation, heterogeneity, programmed cell death, yeast,
- Publikační typ
- úvodníky MeSH
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
- MeSH
- apoptóza účinky léků MeSH
- autofagie účinky léků MeSH
- chemorezistence MeSH
- dlaždicobuněčné karcinomy hlavy a krku farmakoterapie genetika metabolismus patologie MeSH
- ferroptóza účinky léků MeSH
- genetická heterogenita MeSH
- lidé MeSH
- nádorové mikroprostředí MeSH
- nádory hlavy a krku farmakoterapie genetika metabolismus patologie MeSH
- nekroptóza účinky léků MeSH
- protinádorové látky terapeutické užití MeSH
- pyroptóza účinky léků MeSH
- regulovaná buněčná smrt účinky léků MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- protinádorové látky MeSH
The existence of programmed cell death (PCD) in yeast and its significance to simple unicellular organisms is still questioned. However, such doubts usually do not reflect the fact that microorganisms in nature exist predominantly within structured, multicellular communities capable of differentiation, in which a profit of individual cells is subordinated to a profit of populations. In this study, we show that some PCD features naturally appear during the development of multicellular Saccharomyces cerevisiae colonies. An ammonia signal emitted by aging colonies triggers metabolic changes that localize yeast death only in the colony center. The remaining population can exploit the released nutrients and survives. In colonies defective in Sok2p transcription factor that are unable to produce ammonia, death is spread throughout the whole population, thus decreasing the lifetime of the colony. The absence of Mca1p metacaspase or Aif1p orthologue of mammalian apoptosis-inducing factor does not prevent regulated death in yeast colonies.
- MeSH
- amoniak metabolismus MeSH
- apoptóza fyziologie MeSH
- kaspasy metabolismus MeSH
- NADH, NADPH oxidoreduktasy metabolismus MeSH
- regulace genové exprese u hub fyziologie MeSH
- represorové proteiny genetika MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AIF1 protein, S cerevisiae MeSH Prohlížeč
- amoniak MeSH
- kaspasy MeSH
- MCA1 protein, S cerevisiae MeSH Prohlížeč
- NADH, NADPH oxidoreduktasy MeSH
- represorové proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- SOK2 protein, S cerevisiae MeSH Prohlížeč
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
- Klíčová slova
- CAR T cells, antigen-presenting cells, chemotherapy, danger signals, dendritic cell, immune-checkpoint blockers, immunogenic cell death, immunotherapy,
- MeSH
- buněčná smrt MeSH
- cytokiny metabolismus MeSH
- imunogenní buněčná smrt MeSH
- lidé MeSH
- nádory * MeSH
- protinádorové látky * farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
- protinádorové látky * MeSH
BACKGROUND: Immune checkpoint inhibitors (ICI) targeting the programmed cell death protein 1 (PD-1) signaling pathway have dramatically improved the clinical outcomes of oncological patients having advanced non-small cell lung carcinoma (NSCLC). The immunohistochemical analysis of programmed death-ligand 1 (PD-L1) expression remains the most widely used and clinically validated bio-marker predicting efficacy of ICI in NSCLC patients, but it represents in isolation an imperfect tool. The PD-1 axis is intricately coupled with numerous cellular and molecular factors within the tumor microenvironment (TME) of NSCLC. Cellular factors implicated in the regulation process of PD-L1 expression in NSCLC are related to the activity of tumor infiltrating lymphocytes and cancer associated fibroblasts. Intrinsic molecular factors which affect the level of PD-L1 expression are associated with the presence of oncogenic driver mutations in the Kirsten rat sarcoma viral oncogene homolog and epidermal growth factor receptor genes and to rearrangements in the anaplastic lymphoma kinase. Furthermore, activation of hypoxic signaling pathways and the transforming growth factor beta 1 axis can have an impact on the level of PD-L1 expression in NSCLC. A deeper understanding of the complex mechanisms regulating PD-L1 expression is necessary to tailor the treatment with ICI in patients with advanced NSCLC. PURPOSE: In this review, we present an overview of key factors underlying the regulation of PD-L1 expression within the TME of NSCLC, which are, and potentially can be, exploited to improve the outcomes of immunotherapy targeting the PD-1 axis.
- Klíčová slova
- epithelial to mesenchymal transition, hypoxia -inducible factor-1α, immune checkpoint inhibitors, non-small cell lung carcinoma, programmed cell death protein 1, programmed death-ligand 1, tumor infiltrating lymphocytes, tumour infiltrating lymphocytes,
- MeSH
- antigeny CD274 * genetika metabolismus MeSH
- antigeny CD279 * genetika metabolismus MeSH
- biologické markery MeSH
- lidé MeSH
- nádorové mikroprostředí genetika MeSH
- nádory plic * farmakoterapie genetika MeSH
- nemalobuněčný karcinom plic * farmakoterapie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD274 * MeSH
- antigeny CD279 * MeSH
- biologické markery MeSH
- CD274 protein, human MeSH Prohlížeč
Neuroblastoma (NBL) is the most common extracranial childhood malignant tumor and represents a major cause of cancer-related deaths in infants. NMYC amplification or overexpression is associated with the malignant behavior of NBL tumors. In the present study, we revealed an association between long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) and NMYC amplification in NBL cell lines and MIAT expression in NBL tissue samples. MIAT silencing induces cell death only in cells with NMYC amplification, but in NBL cells without NMYC amplification it decreases only the proliferation. MIAT downregulation markedly reduces the NMYC expression in NMYC-amplified NBL cell lines and c-Myc expression in NMYC non-amplified NBL cell lines, but the ectopic overexpression or downregulation of NMYC did not affect the expression of MIAT. Moreover, MIAT downregulation results in decreased ornithine decarboxylase 1 (ODC1), a known transcriptional target of MYC oncogenes, and decreases the glycolytic metabolism and respiratory function. These results indicate that MIAT is an upstream regulator of NMYC and that MIAT/NMYC axis disruption induces cell death in NMYC-amplified NBL cell lines. These findings reveal a novel mechanism for the regulation of NMYC in NBL, suggesting that MIAT might be a potential therapeutic target, especially for those with NMYC amplification.
- Klíčová slova
- NMYC amplification, cell metabolism, lncRNA MIAT, neuroblastoma,
- MeSH
- apoptóza MeSH
- buněčný cyklus MeSH
- glykolýza MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory mozku metabolismus MeSH
- neuroblastom metabolismus MeSH
- pohyb buněk MeSH
- proliferace buněk MeSH
- protoonkogen n-myc metabolismus MeSH
- regulace genové exprese u nádorů * MeSH
- RNA dlouhá nekódující genetika metabolismus MeSH
- stanovení celkové genové exprese MeSH
- umlčování genů MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Miat long non-coding RNA MeSH Prohlížeč
- MYCN protein, human MeSH Prohlížeč
- protoonkogen n-myc MeSH
- RNA dlouhá nekódující MeSH
Homeostasis and development in vertebrates are regulated by cell proliferation, differentiation and death. Permeability of mitochondrial membranes, a decisive feature of apoptosis, is regulated by Bcl-2 family regulators. Protein p53 is able to reduce bcl-2 and promote bax expression. This study focused on the immunohistochemical detection of the expression levels of Bcl-2 family regulators (anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bcl-Xs and Bax), p53, and PCNA as a marker of proliferation, together with the evaluation of the level of apoptosis in human embryos (anlage of limbs, axial skeleton, metanephros, and intestine). Expression of observed proteins was assessed by a three-step immunohistochemistry and evidenced by the double-staining technique. Apoptosis was detected by the TUNEL technique. This study provided circumstantial evidence of the exclusive role of Bcl-2 and Bcl-XL proteins in the inhibition of apoptosis - only rarely were the Bcl-2/ Bcl-XL positive cells stained by TUNEL. The role of pro-apoptotic members of Bcl-2 family remains ambiguous, as TUNEL positive cells are both Bax/Bcl-Xs positive and negative. This study provided substantial evidence that expression patterns of observed proteins are neither fully explainable by "rheostat" theory, nor are the findings obtained from animal model tissue or cell culture commonly applicable to human embryos.
- MeSH
- apoptóza fyziologie MeSH
- embryo savčí embryologie metabolismus MeSH
- embryonální vývoj fyziologie MeSH
- končetiny embryologie fyziologie MeSH
- kosti a kostní tkáň embryologie metabolismus MeSH
- ledviny embryologie metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- orgánová specificita MeSH
- proliferace buněk MeSH
- proliferační antigen buněčného jádra metabolismus MeSH
- protoonkogenní proteiny c-bcl-2 metabolismus MeSH
- střeva embryologie MeSH
- střevní sliznice metabolismus MeSH
- tkáňová distribuce MeSH
- vývojová regulace genové exprese fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- proliferační antigen buněčného jádra MeSH
- protoonkogenní proteiny c-bcl-2 MeSH