Nejvíce citovaný článek - PubMed ID 16807301
At the end of the mammalian intra-uterine foetal development, a rapid switch from glycolytic to oxidative metabolism must proceed. Using microarray techniques, qPCR, enzyme activities and coenzyme Q content measurements, we describe perinatal mitochondrial metabolism acceleration in rat liver and skeletal muscle during the perinatal period and correlate the results with those in humans. Out of 1546 mitochondrial genes, we found significant changes in expression in 1119 and 827 genes in rat liver and skeletal muscle, respectively. The most remarkable expression shift occurred in the rat liver at least two days before birth. Coenzyme Q-based evaluation in both the rat model and human tissues showed the same trend: the total CoQ content is low prenatally, significantly increasing after birth in both the liver and skeletal muscle. We propose that an important regulator of rat coenzyme Q biosynthesis might be COQ8A, an atypical kinase involved in the biosynthesis of coenzyme Q. Our microarray data, a total of 16,557 RefSeq (Entrez) genes, have been deposited in NCBI's Gene Expression Omnibus and are freely available to the broad scientific community. Our microarray data could serve as a suitable background for finding key factors regulating mitochondrial metabolism and the preparation of the foetus for the transition to extra-uterine conditions.
- Klíčová slova
- coenzyme Q, human, microarray, mitochondria, prenatal, qPCR, rat, ubiquinone,
- Publikační typ
- časopisecké články MeSH
Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 - over 1000 kDa) and cultured cells (400-670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase.
- MeSH
- buněčné linie MeSH
- elektronový transportní řetězec chemie metabolismus MeSH
- lidé MeSH
- metabolické sítě a dráhy MeSH
- mitochondrie genetika metabolismus MeSH
- molekulová hmotnost MeSH
- orgánová specificita MeSH
- oxidativní fosforylace MeSH
- respirační komplex II chemie metabolismus MeSH
- transport elektronů MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- elektronový transportní řetězec MeSH
- respirační komplex II MeSH
Mitochondrial ATPases associated with diverse cellular activities (AAA) proteases are involved in the quality control and processing of inner-membrane proteins. Here we investigate the cellular activities of YME1L, the human orthologue of the Yme1 subunit of the yeast i-AAA complex, using stable short hairpin RNA knockdown and expression experiments. Human YME1L is shown to be an integral membrane protein that exposes its carboxy-terminus to the intermembrane space and exists in several complexes of 600-1100 kDa. The stable knockdown of YME1L in human embryonic kidney 293 cells led to impaired cell proliferation and apoptotic resistance, altered cristae morphology, diminished rotenone-sensitive respiration, and increased susceptibility to mitochondrial membrane protein carbonylation. Depletion of YME1L led to excessive accumulation of nonassembled respiratory chain subunits (Ndufb6, ND1, and Cox4) in the inner membrane. This was due to a lack of YME1L proteolytic activity, since the excessive accumulation of subunits was reversed by overexpression of wild-type YME1L but not a proteolytically inactive YME1L variant. Similarly, the expression of wild-type YME1L restored the lamellar cristae morphology of YME1L-deficient mitochondria. Our results demonstrate the importance of mitochondrial inner-membrane proteostasis to both mitochondrial and cellular function and integrity and reveal a novel role for YME1L in the proteolytic regulation of respiratory chain biogenesis.
- MeSH
- apoptóza MeSH
- ATPázy spojené s různými buněčnými aktivitami MeSH
- genový knockdown MeSH
- GTP-fosfohydrolasy metabolismus MeSH
- lidé MeSH
- metaloendopeptidasy metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny MeSH
- mitochondrie metabolismus MeSH
- NADH, NADPH oxidoreduktasy metabolismus MeSH
- proliferace buněk * MeSH
- proteasy závislé na ATP metabolismus MeSH
- proteasy metabolismus MeSH
- protein - isoformy metabolismus MeSH
- respirační komplex I MeSH
- respirační komplex IV metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae cytologie metabolismus MeSH
- transport elektronů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ATPázy spojené s různými buněčnými aktivitami MeSH
- GTP-fosfohydrolasy MeSH
- metaloendopeptidasy MeSH
- mitochondriální proteiny MeSH
- NADH, NADPH oxidoreduktasy MeSH
- NDUFB6 protein, human MeSH Prohlížeč
- OPA1 protein, human MeSH Prohlížeč
- proteasy závislé na ATP MeSH
- proteasy MeSH
- protein - isoformy MeSH
- respirační komplex I MeSH
- respirační komplex IV MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- YME1 protein, S cerevisiae MeSH Prohlížeč
- YME1L1 protein, human MeSH Prohlížeč