Nejvíce citovaný článek - PubMed ID 16841857
Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.
- Klíčová slova
- Coronary artery, Cytochrome P450, Eicosanoids, Heart failure, Hypertension, Inflammation, Mitochondrial function, Myocardial infarction, Soluble epoxide hydrolase,
- MeSH
- epoxid hydrolasy antagonisté a inhibitory metabolismus MeSH
- epoxidové sloučeniny chemie metabolismus MeSH
- infarkt myokardu farmakoterapie enzymologie metabolismus MeSH
- inhibitory enzymů terapeutické užití MeSH
- komorová tachykardie farmakoterapie enzymologie metabolismus MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- nemoci srdce farmakoterapie enzymologie metabolismus MeSH
- rozpustnost MeSH
- srdeční arytmie farmakoterapie enzymologie metabolismus MeSH
- srdeční selhání farmakoterapie enzymologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- epoxid hydrolasy MeSH
- epoxidové sloučeniny MeSH
- inhibitory enzymů MeSH
- mastné kyseliny MeSH
Milk fat is an important nutritional compound in the human diet. From the health point of view, some fatty acids (FAs), particularly long-chain PUFAs such as EPA and DHA, have been at the forefront of interest due to their antibacterial, antiviral, anti-inflammatory, and anti-tumor properties, which play a positive role in the prevention of cardiovascular diseases (CVD), as well as linoleic and γ-linolenic acids, which play an important role in CVD treatment as essential components of phospholipids in the mitochondria of cell membranes. Thus, the modification of the FA profile-especially an increase in the concentration of polyunsaturated FAs and n-3 FAs in bovine milk fat-is desirable. The most effective way to achieve this goal is via dietary manipulations. The effects of various strategies in dairy nutrition have been thoroughly investigated; however, there are some alternative or unconventional feedstuffs that are often used for purposes other than basic feeding or modifying the fatty acid profiles of milk, such as tanniferous plants, herbs and spices, and algae. The use of these foods in dairy diets and their effects on milk fatty acid profile are reviewed in this article. The contents of selected individual FAs (atherogenic, rumenic, linoleic, α-linolenic, eicosapentaenoic, and docosahexaenoic acids) and their combinations; the contents of n3 and n6 FAs; n6/n3 ratios; and atherogenic, health-promoting and S/P indices were used as criteria for assessing the effect of these feeds on the health properties of milk fat.
- Klíčová slova
- algae, camelina, dairy cows, health, herbs and spices, indices, milk fat quality, okara, tannins,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH