Nejvíce citovaný článek - PubMed ID 16894341
UNLABELLED: Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE: Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
- Klíčová slova
- Borrelia burgdorferi, Lyme disease, evolution, genome diversification, plasmids, recombination,
- MeSH
- Borrelia burgdorferi komplex genetika klasifikace MeSH
- Borrelia burgdorferi genetika klasifikace MeSH
- Borrelia genetika klasifikace MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- interakce mikroorganismu a hostitele genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- lipoproteiny * genetika MeSH
- lymeská nemoc * mikrobiologie přenos MeSH
- molekulární evoluce MeSH
- plazmidy genetika MeSH
- rekombinace genetická * MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
- Názvy látek
- lipoproteiny * MeSH
Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.
- MeSH
- Borrelia burgdorferi * MeSH
- klíště * MeSH
- larva MeSH
- lymeská nemoc * MeSH
- myši inbrední C3H MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Lyme borreliosis (LB) is the most prevalent tick-borne human infection in Europe, with increasing incidence during the latest decades. Abundant populations of Ixodes ricinus, the main vector of the causative agent, spirochetes from the Borrelia burgdorferi sensu lato (Bbsl) complex, have been observed in urban and suburban areas of Europe, in general, and Slovakia, particularly. Understanding the spread of infectious diseases is crucial for implementing effective control measures. Global changes affect contact rates of humans and animals with Borrelia-infected ticks and increase the risk of contracting LB. The aim of this study was to investigate spatial and temporal variation in prevalence of Bbsl and diversity of its species in questing I. ricinus from three sites representing urban/suburban, natural and agricultural habitat types in Slovakia. Ixodes ricinus nymphs and adults were collected by dragging the vegetation in green areas of Bratislava town (urban/suburban habitat), in the Small Carpathians Mountains (natural habitat) (south-western Slovakia) and in an agricultural habitat at Rozhanovce in eastern Slovakia. Borrelia presence in ticks was detected by PCR and Bbsl species were identified by restriction fragment length polymorphism (RFLP). Borrelia burgdorferi s.l. species in coinfected ticks were identified by reverse line blot. Significant spatial and temporal variability in prevalence of infected ticks was revealed in the explored habitats. The lowest total prevalence was detected in the urban/suburban habitat, whereas higher prevalence was found in the natural and agricultural habitat. Six Bbsl species were detected by RFLP in each habitat type -B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. valaisiana, B. lusitaniae and B. spielmanii. Coinfections accounted for 3% of the total infections, whereby B. kurtenbachii was identified by RLB and sequencing in mixed infection with B. burgdorferi s.s, B. garinii and B. valaisiana. This finding represents the first record of B. kurtenbachii in questing I. ricinus in Slovakia and Europe. Variations in the proportion of Bbsl species were found between nymphs and adults, between years and between habitat types. Spatial variations in prevalence patterns and proportion of Bbsl species were also confirmed between locations within a relatively short distance in the urban habitat. Habitat-related and spatial variations in Borrelia prevalence and distribution of Bbsl species are probably associated with the local environmental conditions and vertebrate host spectrum. Due to the presence of Borrelia species pathogenic to humans, all explored sites can be ranked as areas with high epidemiological risk.
- Klíčová slova
- Borrelia burgdorferi, Ixodes ricinus, Slovakia, prevalence, species,
- Publikační typ
- časopisecké články MeSH
Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biologická evoluce MeSH
- Borrelia burgdorferi genetika růst a vývoj imunologie MeSH
- druhová specificita MeSH
- imunitní únik fyziologie MeSH
- interakce hostitele a patogenu fyziologie MeSH
- klíšťata MeSH
- komplement - faktor H metabolismus MeSH
- křepelky a křepelovití MeSH
- lidé MeSH
- lymeská nemoc imunologie přenos MeSH
- myši MeSH
- tropismus virů fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cold shock protein CS7.4, Bacteria MeSH Prohlížeč
- komplement - faktor H MeSH
Vector-borne pathogens establish systemic infections in host tissues to maximize transmission to arthropod vectors. Co-feeding transmission occurs when the pathogen is transferred between infected and naive vectors that feed in close spatiotemporal proximity on a host that has not yet developed a systemic infection. Borrelia afzelii is a tick-borne spirochete bacterium that causes Lyme borreliosis (LB) and is capable of co-feeding transmission. Whether ticks that acquire LB pathogens via co-feeding are actually infectious to vertebrate hosts has never been tested. We created nymphs that had been experimentally infected as larvae with B. afzelii via co-feeding or systemic transmission, and compared their performance over one complete LB life cycle. Co-feeding nymphs had a spirochete load that was 26 times lower than systemic nymphs but both nymphs were highly infectious to mice (i.e., probability of nymph-to-host transmission of B. afzelii was ~100%). The mode of transmission had no effect on the other infection phenotypes of the LB life cycle. Ticks that acquire B. afzelii via co-feeding transmission are highly infectious to rodents, and the resulting rodent infection is highly infectious to larval ticks. This is the first study to show that B. afzelii can use co-feeding transmission to complete its life cycle.
- MeSH
- arachnida jako vektory mikrobiologie fyziologie MeSH
- klíšťata mikrobiologie fyziologie MeSH
- krmivo pro zvířata mikrobiologie MeSH
- lymeská nemoc mikrobiologie přenos MeSH
- myši MeSH
- nymfa mikrobiologie fyziologie MeSH
- stadia vývoje MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
BACKGROUND: The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. METHODS: Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. RESULTS: Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. CONCLUSIONS: Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia populations because of the re-assortment of pre-existing sequence variants. Even if our findings of broad genetic diversity among 8 strains cultured from ticks that fed on a single bird could be the exception rather than the rule, they support the theory that the diversity and evolution of LB spirochetes is driven mainly by the host.
- MeSH
- Borrelia burgdorferi klasifikace genetika izolace a purifikace MeSH
- esenciální geny MeSH
- fylogeneze MeSH
- genetická variace MeSH
- klíšťata mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- ptáci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Comparative analysis of ospC genes from 127 Borrelia burgdorferi sensu stricto strains collected in European and North American regions where Lyme disease is endemic and where it is not endemic revealed a close relatedness of geographically distinct populations. ospC alleles A, B, and L were detected on both continents in vectors and hosts, including humans. Six ospC alleles, A, B, L, Q, R, and V, were prevalent in Europe; 4 of them were detected in samples of human origin. Ten ospC alleles, A, B, D, E3, F, G, H, H3, I3, and M, were identified in the far-western United States. Four ospC alleles, B, G, H, and L, were abundant in the southeastern United States. Here we present the first expanded analysis of ospC alleles of B. burgdorferi strains from the southeastern United States with respect to their relatedness to strains from other North American and European localities. We demonstrate that ospC genotypes commonly associated with human Lyme disease in European and North American regions where the disease is endemic were detected in B. burgdorferi strains isolated from the non-human-biting tick Ixodes affinis and rodent hosts in the southeastern United States. We discovered that some ospC alleles previously known only from Europe are widely distributed in the southeastern United States, a finding that confirms the hypothesis of transoceanic migration of Borrelia species.
- MeSH
- alely * MeSH
- antigeny bakteriální genetika MeSH
- Borrelia burgdorferi genetika izolace a purifikace MeSH
- DNA bakterií chemie genetika MeSH
- genetická variace MeSH
- genotyp MeSH
- hlodavci mikrobiologie MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- proteiny vnější bakteriální membrány genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
- Názvy látek
- antigeny bakteriální MeSH
- DNA bakterií MeSH
- OspC protein MeSH Prohlížeč
- proteiny vnější bakteriální membrány MeSH
Blackbirds (Turdus merula) and song thrushes (Turdus philomelos) were found to carry 95% of all spirochete-infected tick larvae among 40 bird species captured in Central Europe. More than 90% of the infections were typed as Borrelia garinii and Borrelia valaisiana. We conclude that thrushes are key players in the maintenance of these spirochete species in this region of Central Europe.
- MeSH
- Borrelia burgdorferi komplex genetika MeSH
- infekce bakteriemi rodu Borrelia epidemiologie veterinární MeSH
- klíšťata genetika mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- nemoci ptáků mikrobiologie MeSH
- Passeriformes mikrobiologie parazitologie MeSH
- prevalence MeSH
- regresní analýza MeSH
- rizikové faktory MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA veterinární MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Slovenská republika epidemiologie MeSH