Nejvíce citovaný článek - PubMed ID 17107465
The presence of Last Glacial Maximum (LGM) biotic communities without modern counterparts is well known. It is particularly evident in central European fossil LGM land snails whose assemblages represent an odd mix of species that are currently limited to either xeric or wetland habitats. Here we document a genetically verified discovery of the modern calcareous wetland species Pupilla alpicola on Iceland, where it is limited to dry grasslands. This species also represents a common European LGM fossil, and its new records from Iceland help explain puzzling shifts of some glacial land snails of xeric grassland habitats to open wetlands today. Similarities between the climates of modern Iceland and LGM Eurasia suggest that this species did not become limited to wetlands in continental Europe until after the Late Pleistocene-Holocene climate transition. These results are a strong reminder that assumptions of ecological uniformity must be questioned and that the quality and robustness of palaeoecological reconstructions is dependent upon adequate knowledge of the full autecological range of species over time.
- MeSH
- ekosystém * MeSH
- hlemýždi * MeSH
- klimatické změny MeSH
- mokřady MeSH
- pastviny MeSH
- podnebí MeSH
- populační dynamika * MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Island MeSH
Over the years, researchers have used presumptively neutral molecular variation to infer the origins of current species' distributions in northern latitudes (especially Europe). However, several reported examples of genic and chromosomal replacements suggest that end-glacial colonizations of particular northern areas may have involved genetic input from different source populations at different times, coupled with competition and selection. We investigate the functional consequences of differences between two bank vole (Clethrionomys glareolus) haemoglobins deriving from different glacial refugia, one of which partially replaced the other in Britain during end-glacial climate warming. This allows us to examine their adaptive divergence and hence a possible role of selection in the replacement. We determine the amino acid substitution Ser52Cys in the major expressed β-globin gene as the allelic difference. We use structural modelling to reveal that the protein environment renders the 52Cys thiol a highly reactive functional group and we show its reactivity in vitro. We demonstrate that possessing the reactive thiol in haemoglobin increases the resistance of bank vole erythrocytes to oxidative stress. Our study thus provides striking evidence for physiological differences between products of genic variants that spread at the expense of one another during colonization of an area from different glacial refugia.
- Klíčová slova
- adaptation, antioxidative capacity, climate change, cysteine, oxidative stress, redox,
- MeSH
- Arvicolinae klasifikace genetika metabolismus MeSH
- fylogeografie MeSH
- genetická variace MeSH
- hemoglobiny chemie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
- Názvy látek
- hemoglobiny MeSH
BACKGROUND/AIMS: Recently, new palaeoecological records supported by molecular analyses and palaeodistributional modelling have provided more comprehensive insights into plant behaviour during the last Quaternary cycle. We reviewed the migration history of species of subgenus Alnus during the last 50,000 years in Europe with a focus on (1) a general revision of Alnus history since the Last Glacial Maximum (LGM), (2) evidence of northern refugia of Alnus populations during the LGM and (3) the specific history of Alnus in particular European regions. METHODOLOGY: We determined changes in Alnus distribution on the basis of 811 and 68 radiocarbon-dated pollen and macrofossil sites, respectively. We compiled data from the European Pollen Database, the Czech Quaternary Palynological Database, the Eurasian Macrofossil Database and additional literature. Pollen percentage thresholds indicating expansions or retreats were used to describe patterns of past Alnus occurrence. PRINCIPAL FINDINGS: An expansion of Alnus during the Late Glacial and early Holocene periods supports the presence of alders during the LGM in southern peninsulas and northerly areas in western Europe, the foothills of the Alps, the Carpathians and northeastern Europe. After glaciers withdrew, the ice-free area of Europe was likely colonized from several regional refugia; the deglaciated area of Scandinavia was likely colonized from a single refugium in northeastern Europe. In the more northerly parts of Europe, we found a scale-dependent pattern of Alnus expansion characterised by a synchronous increase of Alnus within individual regions, though with regional differences in the times of the expansion. In southern peninsulas, the Alps and the Carpathians, by contrast, it seems that Alnus expanded differently at individual sites rather than synchronously in whole regions. CONCLUSIONS: Our synthesis supports the idea that northern LGM populations were important sources of postglacial Alnus expansion. The delayed Alnus expansion apparent in some regions was likely a result of environmental limitations.
- MeSH
- demografie * MeSH
- olše fyziologie MeSH
- paleontologie metody MeSH
- pyl chemie MeSH
- radioizotopy uhlíku analýza MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- systematický přehled MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- radioizotopy uhlíku MeSH