Nejvíce citovaný článek - PubMed ID 17176757
Incidence of lysogenic, colicinogenic and siderophore-producing strains among human non-pathogenic Escherichia coli
Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.
- MeSH
- DNA virů genetika izolace a purifikace MeSH
- druhová specificita MeSH
- elektronová mikroskopie MeSH
- fágy salmonel klasifikace izolace a purifikace fyziologie ultrastruktura MeSH
- fylogeneze MeSH
- genom virový MeSH
- lyzogenie MeSH
- mikrobiologie životního prostředí MeSH
- Salmonella enterica izolace a purifikace virologie MeSH
- salmonelóza mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- sekvenční homologie nukleových kyselin MeSH
- virová nálož MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Československo MeSH
- Názvy látek
- DNA virů MeSH
Colicin FY is a plasmid encoded toxin that recognizes a yersinia-specific outer membrane protein (YiuR) as a receptor molecule. We have previously shown that the activity spectrum of colicin FY comprises strains of the genus Yersinia. In this study, we analyzed the activity of colicin FY against 110 Yersinia enterocolitica isolates differing in geographical origin and source. All isolates were characterized through analysis of 16S rRNA genes, serotyping, biotyping, restriction profiling of genomic DNA, detection of virulence markers and susceptibility to antibiotics. This confirmed the broad variability of the collection, in which all 110 Y. enterocolitica isolates, representing 77 various strains, were inhibited by colicin FY. Although isolates showed variable levels of susceptibility to colicin FY, it was not associated with any strain characteristic. The universal susceptibility of Y. enterocolitica strains to colicin FY together with the absence of activity towards strains outside the Yersinia genus suggests potential therapeutic applications for colicin FY.
- MeSH
- bakteriální léková rezistence účinky léků MeSH
- faktory virulence genetika metabolismus MeSH
- genom bakteriální * MeSH
- koliciny farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- Yersinia enterocolitica genetika izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktory virulence MeSH
- koliciny MeSH
A novel colicin type, designated colicin Fy, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin Fy was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin Fy activity gene (cfyA) and the colicin Fy immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin Fy was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin Fy-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin Fy receptor molecule. Introduction of the yiuR gene into the colicin Fy-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin Fy. In contrast, the colicin Fy-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin Fy only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins Fy and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin Fy and colicin Ib producers suggest a common evolutionary origin of the colicin Fy-YiuR and colicin Ib-Cir systems.
- MeSH
- bakteriální chromozomy genetika MeSH
- bakteriální proteiny genetika metabolismus MeSH
- buněčná membrána fyziologie MeSH
- Escherichia coli genetika metabolismus MeSH
- fylogeneze MeSH
- genotyp MeSH
- klonování DNA MeSH
- koliciny metabolismus farmakologie MeSH
- membránové proteiny genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- plazmidy genetika MeSH
- regulace genové exprese u bakterií fyziologie MeSH
- sekvence aminokyselin MeSH
- Yersinia účinky léků genetika metabolismus patogenita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- koliciny MeSH
- membránové proteiny MeSH
- tonB protein, Bacteria MeSH Prohlížeč
The strain Escherichia coli Nissle 1917 (EcN) is widely used as an efficient probiotic in therapy and prevention of human infectious diseases, especially of the intestinal system. Concurrently, small adult pigs are being used as experimental omnivore models to study human gastrointestinal functions. EcN bacteria were applied to 6 adult healthy female pigs in a 2-week trial. 6 Control animals remained untreated. Altogether, 164 and 149 bacterial strains were isolated from smear samples taken from gastrointestinal mucosa in the experimental and control group, respectively. Each individual E. coli strain was then tested for the presence of 29 bacteriocin-encoding determinants as well as for DNA markers of A, B1, B2 and D phylogenetic groups. A profound reduction of E. coli genetic variance (from 32 variants to 13 ones, P = 0.0006) was found in the experimental group, accompanied by a lower incidence of bacteriocin producers in the experimental group when compared to control (21.3 and 34.9%, respectively; P = 0.007) and by changes in the incidence of individual bacteriocin types. The experimental administration of EcN strain was not sufficient for stable colonization of porcine gut, but induced significant changes in the enterobacterial microbiota.
- MeSH
- bakteriální geny MeSH
- bakteriociny genetika MeSH
- Escherichia coli klasifikace izolace a purifikace MeSH
- fylogeneze MeSH
- genetická variace MeSH
- molekulární typizace MeSH
- prasata MeSH
- probiotika aplikace a dávkování MeSH
- společenstvo * MeSH
- střevní sliznice mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny MeSH
AIM: To evaluate bacteriocinogeny in short-term high-dose indomethacin administration with or without probiotic Escherichia coli Nissle 1917 (EcN) in experimental pigs. METHODS: Twenty-four pigs entered the study: Group A (controls), Group B (probiotics alone), Group C (indomethacin alone) and Group D (probiotics and indomethacin). EcN (3.5×10(10) bacteria/d for 14 d) and/or indomethacin (15 mg/kg per day for 10 d) were administrated orally. Anal smears before and smears from the small and large intestine were taken from all animals. Bacteriocin production was determined with 6 different indicator strains; all strains were polymerase chain reaction tested for the presence of 29 individual bacteriocin-encoding determinants. RESULTS: The general microbiota profile was rather uniform in all animals but there was a broad diversity in coliform bacteria (parallel genotypes A, B1, B2 and D found). In total, 637 bacterial strains were tested, mostly Escherichia coli (E. coli). There was a higher incidence of non-E. coli strains among samples taken from the jejunum and ileum compared to that of the colon and rectum indicating predominance of E. coli strains in the large intestine. Bacteriocinogeny was found in 24/77 (31%) before and in 155/560 (28%) isolated bacteria at the end of the study. Altogether, 13 individual bacteriocin types (out of 29 tested) were identified among investigated strains. Incidence of four E. coli genotypes was equally distributed in all groups of E. coli strains, with majority of genotype A (ranging from 81% to 88%). The following types of bacteriocins were most commonly revealed: colicins Ia/Ib (44%), microcin V (18%), colicin E1 (16%) and microcin H47 (6%). There was a difference in bacteriocinogeny between control group A (52/149, 35%) and groups with treatment at the end of the study: B: 31/122 (25%, P=0.120); C: 43/155 (28%, P=0.222); D: 29/134 (22%, P=0.020). There was a significantly lower prevalence of colicin Ib, microcins H47 and V (probiotics group, P<0.001), colicin E1 and microcin H47 (indomethacin group, P<0.001) and microcins H47 and V (probiotics and indomethacin group, P=0.025) compared to controls. Escherichia fergusonii (E. fergusonii) was identified in 6 animals (6/11 isolates from the rectum). One strain was non-colicinogenic, while all other strains of E. fergusonii solely produced colicin E1. All animals started and remained methanogenic despite the fact that EcN is a substantial hydrogen producer. There was an increase in breath methane (after the treatment) in 5/6 pigs from the indomethacin group (C). CONCLUSION: EcN did not exert long-term liveability in the porcine intestine. All experimental pigs remained methanogenic. Indomethacin and EcN administered together might produce the worst impact on bacteriocinogeny.
- Klíčová slova
- Bacteriocinogeny, Escherichia coli Nissle 1917, Experimental pigs, Indomethacin,
- MeSH
- antiflogistika nesteroidní škodlivé účinky farmakologie MeSH
- bakteriociny metabolismus MeSH
- dechové testy MeSH
- Escherichia coli metabolismus MeSH
- indomethacin škodlivé účinky farmakologie MeSH
- lidé MeSH
- metagenom MeSH
- methan metabolismus MeSH
- probiotika farmakologie MeSH
- střevní sliznice účinky léků mikrobiologie MeSH
- Sus scrofa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- bakteriociny MeSH
- indomethacin MeSH
- methan MeSH
BACKGROUND: Bacteriocin production is an important characteristic of E. coli strains of human origin. To date, 26 colicin and 9 microcin types have been analyzed on a molecular level allowing molecular detection of the corresponding genes. The production incidence of 29 bacteriocin types and E. coli phylogroups were tested in a set of 361 E. coli strains isolated from human urinary tract infections (UTI) and in 411 control strains isolated from feces of patients without bacterial gut infection. RESULTS: Production of 17 and 20 individual bacteriocin types was found in the UTI and control strains, respectively. Microcin H47 encoding determinants were found more often among UTI strains compared to controls (37.9% and 27.0% respectively, p = 0.02) and strains producing microcin H47 belonged predominantly to phylogroup B2 when compared to other bacteriocin producers (67.4% and 36.7%, respectively; p < 0.0001). Producers of 3 or more identified bacteriocin types were more common in the UTI group (20.0% compared to 12.4% in controls, p = 0.03). In the UTI strains, there was a markedly higher number of those producing colicin E1 compared to controls (22.1% to 10.2%, respectively, p = 0.0008). Moreover, colicin E1 production was more common in the UTI bacteriocinogenic strains with multi-producer capabilities. As shown by Southern blotting, pColE1 DNA was not recognized by the ColIa probe and vice versa suggesting that pColE1 was independently associated with pColIa in UTI strains. CONCLUSION: E. coli strains isolated from human urinary tract infections showed increased incidence of microcin H47 and colicin E1 production, respectively. Moreover, colicin E1 itself appears to be a potentially important virulence factor of certain uropathogenic E. coli strains.
- MeSH
- bakteriociny biosyntéza genetika MeSH
- Escherichia coli genetika izolace a purifikace metabolismus MeSH
- faktory virulence genetika metabolismus MeSH
- feces mikrobiologie MeSH
- infekce močového ústrojí mikrobiologie MeSH
- infekce vyvolané Escherichia coli mikrobiologie MeSH
- koliciny genetika metabolismus MeSH
- lidé MeSH
- uropatogenní Escherichia coli genetika izolace a purifikace metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriociny MeSH
- faktory virulence MeSH
- koliciny MeSH
Striking differences in the production of specific inhibitory agents affecting other strains of the same (or of related) species were found between genera of the family Enterobacteriaceae. We tested 50-163 strains each of the potentially pathogenic genera: Escherichia, Citrobacter, Enterobacter, Kluyvera, and Leclercia for their ability to produce bacteriophages, high-molecular-weight (HMW) and low-molecular-weight (LMW) bacteriocins and siderophores against the same sets of strains, using the cross-test method. The genus Escherichia differs substantially from all other Enterobacteriaceae, harboring a notable proportion of lysogenic (36.6%) and colicinogenic (13.9%) strains. Only 18.2% of the Citrobacter strains are lysogenic and only rarely are they colicinogenic, although in 7.3%, they produce phage tail-like bacteriocins. On the other hand, Kluyvera strains were only in 1.8% lysogenic, no colicinogenic strains were found, but in 7.3%, they produced siderophores causing zones of growth inhibition in agar cultures of strains of the same genus. In Leclercia, 10.0% of the strains were lysogenic, 2.0% produced HMW bacteriocins, no colicinogenic strains were found and 2.0% produced siderophores. Enterobacter has shown 23.1% of strains producing siderophores, whereas merely 7.7% were lysogenic, 1.9% colicinogenic and 3.8% formed phage tail-like bacteriocins. HMW bacteriocins of Enterobacter strains disposed of an unusually wide spectrum of activity. The siderophore activity spectrum was rather wide in any genus, but the siderophores were usually not produced by strains producing phages or colicins.
- MeSH
- antibakteriální látky biosyntéza MeSH
- bakteriociny biosyntéza MeSH
- bakteriofágy fyziologie MeSH
- Enterobacteriaceae klasifikace metabolismus virologie MeSH
- incidence MeSH
- koliciny metabolismus MeSH
- kultivační média MeSH
- lidé MeSH
- lyzogenie MeSH
- molekulová hmotnost MeSH
- siderofory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriociny MeSH
- koliciny MeSH
- kultivační média MeSH
- siderofory MeSH