Nejvíce citovaný článek - PubMed ID 17246175
African populations remain underrepresented in studies of human genetic diversity, despite a growing interest in understanding how they have adapted to the diverse environments they live in. In particular, understanding the genetic basis of immune adaptation to pathogens is of paramount importance in a continent such as Africa, where the burden of infectious diseases is a major public health challenge. In this study, we investigated the molecular variation of four Human Leukocyte Antigens (HLA) class II genes (DRB1, DQA1, DQB1 and DPB1), directly involved in the immune response to parasitic infections, in more than 1000 individuals from 23 populations across North, East, Central and West Africa. By analyzing the HLA molecular diversity of these populations in relation to various geographical, cultural and environmental factors, we identified divergent genetic profiles for several (semi-)nomadic populations of the Sahel belt as a signature of their unique demography. In addition, we observed significant genetic structuring supporting both substantial geographic and linguistic differentiations within West Africa. Furthermore, neutrality tests suggest balancing selection has been shaping the diversity of these four HLA class II genes, which is consistent with molecular comparisons between HLA genes and their orthologs in chimpanzees (Patr). However, the most striking observation comes from linear modeling, demonstrating that the prevalence of Plasmodium falciparum, the primary pathogen of malaria in Africa, significantly explains a large proportion of the nucleotide diversity observed at the DPB1 gene. DPB1*01:01, a highly frequent allele in Burkinabé populations, is identified as a potential protective allele against malaria, suggesting that strong pathogen-driven positive selection at this gene has shaped HLA variation in Africa. Additionally, two low-frequency DRB1 alleles, DRB1*08:06 and DRB1*11:02, also show significant associations with P. falciparum prevalence, supporting resistance to malaria is determined by multigenic and/or multiallelic combinations rather than single allele effects.
- Klíčová slova
- Africa, HLA, human molecular diversity, malaria, pathogen‐driven selection, plasmodium falciparum,
- Publikační typ
- časopisecké články MeSH
African history has been significantly influenced by the Sahara, which has represented a barrier for migrations of all living beings, including humans. Major exceptions were the gene flow events that took place between North African and sub-Saharan populations during the so-called African Humid Periods, especially in the Early Holocene (11.5 to 5.5 thousand years ago), and more recently in connection with trans-Saharan commercial routes. In this study, we describe mitochondrial DNA (mtDNA) diversity of human populations from both sides of the Sahara Desert, i.e., both from North Africa and the Sahel/Savannah belt. The final dataset of 7213 mtDNA sequences from 134 African populations encompasses 470 newly collected and 6743 previously published samples, which were analyzed using descriptive methods and Bayesian statistics. We completely sequenced 26 mtDNAs from sub-Saharan samples belonging to the Eurasian haplogroup N1. Analyses of these N1 mitogenomes revealed their possible routes to the Sahel, mostly via Bab el-Mandab. Our results indicate that maternal gene flow must have been important in this circum-Saharan space, not only within North Africa and the Sahel/Savannah belt but also between these two regions.
- Klíčová slova
- North Africa, Sahel/Savannah belt, mtDNA diversity, population history,
- MeSH
- Bayesova věta MeSH
- černoši * MeSH
- lidé MeSH
- mitochondriální DNA * genetika MeSH
- tok genů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- severní Afrika MeSH
- Názvy látek
- mitochondriální DNA * MeSH
Although inter-species hybrids between the red and sika deer can be phenotypically determined only exceptionally, there is the eventuality of identification via molecular genetic analysis. We used bi-parentally inherited microsatellite markers and a Bayesian statistical framework to re-examine the proportion of hybrids in the Czech red and sika deer populations. In total, 123 samples were collected, and the nuclear dataset consisted of 2668 allelic values. The number of alleles per locus ranged from 10 (BM1818) to 22 (BM888 and T193), yielding the mean of 16 alleles per locus across the deer. The mean allelic diversity of the red deer markedly exceeded that of the Japanese sika deer. Interspecific hybrids were detected, enabling us to confirm the genetic introgression of the sika deer into the red deer populations and vice versa in western Bohemia. The mean hybrid score equaled 10.6%, with 14.3% of the hybrids being among red deer-like individuals and 6.7% among sika-like ones. At two western Bohemian locations, namely, Doupovské hory and Slavkovský les, the total percentages of hybrid animals equaled 18.8 and 8.9, respectively. No red deer alleles were detected in the sika populations of the subregions of Kladská, Žlutice, and Lány. The NeighborNet network clearly separated the seven red and sika deer sampling populations according to the geography. The knowledge gained from the evaluated data is applicable in hunting management to reduce hybridization with the European deer.
- Klíčová slova
- genetic structure, hybridization, introgression, microsatellite variability, sika-red deer hybrid,
- Publikační typ
- časopisecké články MeSH
How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.
- Klíčová slova
- climate adaptation, genome-wide SNPs, introgression, ovine, pneumonia, whole-genome sequences,
- MeSH
- biologická adaptace genetika MeSH
- biologická evoluce MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genová introgrese * MeSH
- klimatické změny MeSH
- odolnost vůči nemocem genetika MeSH
- ovce genetika imunologie MeSH
- pneumonie imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Understanding the genetic changes underlying phenotypic variation in sheep (Ovis aries) may facilitate our efforts towards further improvement. Here, we report the deep resequencing of 248 sheep including the wild ancestor (O. orientalis), landraces, and improved breeds. We explored the sheep variome and selection signatures. We detected genomic regions harboring genes associated with distinct morphological and agronomic traits, which may be past and potential future targets of domestication, breeding, and selection. Furthermore, we found non-synonymous mutations in a set of plausible candidate genes and significant differences in their allele frequency distributions across breeds. We identified PDGFD as a likely causal gene for fat deposition in the tails of sheep through transcriptome, RT-PCR, qPCR, and Western blot analyses. Our results provide insights into the demographic history of sheep and a valuable genomic resource for future genetic studies and improved genome-assisted breeding of sheep and other domestic animals.
- MeSH
- alely MeSH
- chov zvířat metody MeSH
- chov MeSH
- destičkový růstový faktor metabolismus MeSH
- divoká zvířata genetika MeSH
- druhová specificita MeSH
- fenotyp MeSH
- frekvence genu MeSH
- genetická variace MeSH
- genetika MeSH
- genomika MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- mutace MeSH
- ovce domácí genetika MeSH
- ovce MeSH
- sekvenční analýza DNA MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) MeSH
- vazebná nerovnováha MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- destičkový růstový faktor MeSH
One hundred and sixty-four accessions representing Czech and Slovak pea (Pisum sativum L.) varieties bred over the last 50 years were evaluated for genetic diversity using morphological, simple sequence repeat (SSR) and retrotransposon-based insertion polymorphism (RBIP) markers. Polymorphic information content (PIC) values of 10 SSR loci and 31 RBIP markers were on average high at 0.89 and 0.73, respectively. The silhouette method after the Ward clustering produced the most probable cluster estimate, identifying nine clusters from molecular data and five to seven clusters from morphological characters. Principal component analysis of nine qualitative and eight quantitative morphological parameters explain over 90 and 93% of total variability, respectively, in the first three axes. Multidimensional scaling of molecular data revealed a continuous structure for the set. To enable integration and evaluation of all data types, a Bayesian method for clustering was applied. Three clusters identified using morphology data, with clear separation of fodder, dry seed and afila types, were resolved by DNA data into 17, 12 and five sub-clusters, respectively. A core collection of 34 samples was derived from the complete collection by BAPS Bayesian analysis. Values for average gene diversity and allelic richness for molecular marker loci and diversity indexes of phenotypic data were found to be similar between the two collections, showing that this is a useful approach for representative core selection.
- MeSH
- alely MeSH
- analýza hlavních komponent MeSH
- Bayesova věta MeSH
- frekvence genu MeSH
- genetická variace * MeSH
- genetické markery genetika MeSH
- hrách setý genetika MeSH
- mikrosatelitní repetice genetika MeSH
- minisatelitní repetice genetika MeSH
- populační dynamika MeSH
- retroelementy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
- retroelementy MeSH