Most cited article - PubMed ID 17852381
Levels of eight trace elements in edible mushrooms from a rural area
We conducted a study of elemental compositions of Xerocomellus chrysenteron samples accompanied by samples of related substrate soils. All samples were collected during the harvesting seasons 2021 and 2022 from three forested sites almost unpolluted by recent human activities and underlain by contrasting bedrock (granite, amphibolite, and serpentinite). Elements such as Ag, Cd, K, P, Rb, S, Se, and Zn were the main elements enriched in the mushroom's fruiting bodies relative to the substrate. Concentrations of most elements in mushrooms were not site-dependent, with only Ag, As, Rb, and Se concentrations significantly depending on the bedrock composition. Some elements analyzed in mushrooms displayed temporal features, but such features were not systematic and varied for each element. Most analyzed elements were distributed unevenly within the mushroom's fruiting bodies, with apical parts generally enriched in mobile elements. Mushrooms influenced concentrations of Ag, Cd, K, and Rb and a few other elements in the substrate via uptake, but such influence was very limited and can be responsible for only 2.5-11.5% of total depletion of the affected substrate in the named elements.
- Keywords
- Bedrock, Mushroom, Soil, Trace elements, Translocation, Uptake,
- MeSH
- Agaricales * MeSH
- Basidiomycota * MeSH
- Cadmium MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cadmium MeSH
Boletus edulis mushroom behaved as an accumulating biosystem with respect to Ag, Rb, Zn, and K. The mushroom was not an efficient accumulator of toxic As, Pb, and Cr, but Se and Cd displayed much higher concentrations in the mushroom than in the substrate samples. Other elements were bioexclusive. Different elements had different within-mushroom mobilities. The highest mobilities were displayed by Zn and Ag, and the lowest by Ti. The mushroom's fruiting body preferentially took up lighter Mg, Cu, and Cd isotopes (Δ26MgFB-soil = -0.75‰; Δ65CuFB-soil = -0.96‰; Δ114CdFB-soil = -0.63‰), and the heavier 66Zn isotope (Δ66ZnFB-soil = 0.92‰). Positive within-mushroom Zn isotope fractionation resulted in accumulation of the heavier 66Zn (Δ66Zncap-stipe = 0.12‰) in the mushroom's upper parts. Cadmium displayed virtually no within-mushroom isotope fractionation. Different parts of the fruiting body fractionated Mg and Cu isotopes differently. The middle part of the stipe (3-6 cm) was strongly depleted in the heavier 26 Mg with respect to the 0-3 cm (Δ26Mgstipe(3-6)-stipe(0-3) = -0.73‰) and 6-9 cm (Δ26Mgstipe(6-9)-stipe(3-6) = 0.28‰) sections. The same stipe part was strongly enriched in the heavier 65Cu with respect to the 0-3 cm (Δ65Custipe(3-6)-stipe(0-3) = 0.63‰) and 6-9 cm (Δ65Custipe(6-9)-stipe(3-6) = -0.42‰) sections. An overall tendency for the upper mushroom's parts to accumulate heavier isotopes was noted for Mg (Δ26Mgcap-stipe = 0.20‰), Zn (Δ66Zncap-stipe = 0.12‰), and Cd (Δ114Cdcap-stipe = 0.04‰), whereas Cu showed the opposite trend (Δ65Cucap-stipe = -0.08‰).
- Keywords
- Fruiting body, Mushroom, Non-traditional stable isotopes, Soil, Trace elements, Translocation,
- MeSH
- Agaricales * MeSH
- Basidiomycota MeSH
- Isotopes analysis MeSH
- Cadmium MeSH
- Soil Pollutants * analysis MeSH
- Soil MeSH
- Zinc analysis MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Isotopes MeSH
- Cadmium MeSH
- Soil Pollutants * MeSH
- Soil MeSH
- Zinc MeSH
Atmospheric deposition-related potentially toxic elements (PTEs) can contaminate mountain forest ecosystems. The influence of tree species is being increasingly recognised as an important factor in the deposition loads in forest soils. However, relevant modelling studies about the forest pollution with PTEs, concerning the tree species composition, are lacking. The aim of this study was to evaluate the effect of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.) on soil and mushroom pollution and the associated health risks to define their significance for pollution modelling. Therefore, topsoil samples and samples of eight edible mushroom species were taken from 51 mature beech- and spruce-dominated stands. The results showed that forest composition had an indirect influence on the PTEs contents in the topsoil; it significantly differentiated the relationship between PTEs and soil C as the beech stands showed significantly increasing PTEs content with increasing C content. Despite the absence of soil pollution, above-limit levels of Cd and Zn were found in mushrooms. The total content of PTEs in mushrooms posed a potential health risk to consumers in 82% of the samples. The most Cd-contaminated and potentially the riskiest species for consumption was Xerocomellus pruinatus (Fr. and Hök) Šutara. The results suggest that the source of PTEs for mushrooms is not only the soil but probably also the current wet deposition. The influence of the forest type on the accumulation of PTEs in mushrooms was confirmed mainly due to the strongly divergent behaviour of Zn in beech- vs. spruce-dominated stands. The results point to the need to evaluate mushroom contamination even in the contamination-unburdened forest areas. For future modelling of PTEs pollution in forests, it is necessary to differentiate the tree species composition.
This article presents a bibliometric study of 200 European publications released between 2001 and 2016, about the contamination of mushrooms by selected elements. The analysis includes figures on the type of analyte, its concentration, the species of fungi, and its country of origin. In the literature review, 492 species of mushrooms (wild-growing and cultured) found in 26 European countries and their concentration of 74 associated elements were analysed. The papers, which dealt mainly with the heavy metal (Cd, Cu, Fe, Pb, and Zn) concentrations of mushrooms, primarily came from Turkey, Poland, Spain, and the Czech Republic. More than 50% of the publications provided data about edible mushrooms. The results of the bibliometric analysis showed that over the 16 years, European research on fungal contamination by selected analytes has not lessened in popularity and is ongoing. Many of the studies underlined the need to assess the risk to human health arising from the consumption of contaminated mushrooms taken from various habitats. These results were the effect of, among other things, the strong interest in studies carried out on edible species, in which concentrations of mainly heavy metals that are dangerous to health and are marked were indicated (Cd, Pb, and Hg).
- Keywords
- Bibliometric analysis, Heavy metals, Mushrooms, Review,
- MeSH
- Agaricales * MeSH
- Bibliometrics MeSH
- Soil Pollutants analysis MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Metals, Heavy analysis MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH
- Europe MeSH
- Poland MeSH
- Spain MeSH
- Turkey MeSH
- Names of Substances
- Soil Pollutants MeSH
- Metals, Heavy MeSH
The aim of the study was to (i) investigate the potential of edible mushroom Boletus badius (Fr.) Fr. to accumulate 53 elements from unpolluted acidic sandy soil and polluted alkaline flotation tailing sites in Poland, (ii) to estimate the low-molecular-weight organic acid (LMWOA) profile and contents in fruit bodies, and finally (iii) to explore the possible relationship between elements and LMWOA content in mushrooms. The content of most elements in fruiting bodies collected from the flotation tailings was significantly higher than in mushrooms from the unpolluted soils. The occurrence of elements determined in fruiting bodies of B. badius has been varied (from 0.01 mg kg-1 for Eu, Lu, and Te up to 18,932 mg kg-1 for K). The results established the high importance of element contents in substrate. Among ten organic acids, nine have been found in wide range: from below 0.01 mg kg-1 for fumaric acid to 14.8 mg g-1 for lactic acid. Lactic and succinic acids were dominant in both areas, and citric acid was also in high content in polluted area. The correlation between element contents and the individual and total content of LMWOAs was confirmed.
- Keywords
- Boletus badius, Contamination, Edible mushroom, Flotation tailings, Mineral composition, Organic acids, Soil, Underlying substrate,
- MeSH
- Agaricales chemistry growth & development MeSH
- Fumarates analysis MeSH
- Succinic Acid analysis MeSH
- Lactic Acid analysis MeSH
- Soil Pollutants analysis MeSH
- Fruiting Bodies, Fungal chemistry growth & development MeSH
- Soil chemistry MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Poland MeSH
- Names of Substances
- Fumarates MeSH
- fumaric acid MeSH Browser
- Succinic Acid MeSH
- Lactic Acid MeSH
- Soil Pollutants MeSH
- Soil MeSH
The autofluorescence (primary fluorescence, AF) of the freshly collected fruiting bodies of the fungus Macrolepiota rhacodes was studied in a Zeiss Jenalumar fluorescence microscope at a blue and a green excitation. The strongest yellow AF at blue excitation was displayed by irregular granules on the surface of the fungal pileus. A weaker yellow-green AF was exhibited by spherical cells and hyphae in the central part of the pileus while basidiospores emitted somewhat stronger AF. At green excitation, a considerable red AF was emitted only by basidiospores, other parts of the pileus showing a very weak red AF. M. rhacodes AF is much weaker than the AF of wood-rotting fungi, such as Fomes fomentarius, Daedalea quercina, Piptoporus betulinus, Fomitopsis pinicola and others.
- MeSH
- Agaricales cytology growth & development physiology MeSH
- Species Specificity MeSH
- Fluorescence * MeSH
- Microscopy, Fluorescence MeSH
- Hyphae physiology ultrastructure MeSH
- Fruiting Bodies, Fungal cytology physiology MeSH
- Spores, Fungal physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH