Nejvíce citovaný článek - PubMed ID 17881342
Population dynamics of diploid and hexaploid populations of a perennial herb
BACKGROUND: Despite many studies on the importance of competition and plants' associations with mutualists and pathogens on plant performance and community organization, the joint effects of these two factors remain largely unexplored. Even less is known about how these joint effects vary through a plant's life in different environmental conditions and how they contribute to the long-term coexistence of species. METHODS: We investigated the role of plant-soil feedback (PSF) in intra- and interspecific competition, using two co-occurring dry grassland species as models. A two-phase PSF experiment was used. In the first phase, soil was conditioned by the two plant species. In the second, we assessed the effect of soil conditioning, competition and drought stress on seedling establishment, plant growth in the first and second vegetation season, and fruit production. We also estimated effects of different treatments on overall population growth rates and predicted the species' potential coexistence. RESULTS: Soil conditioning played a more important role in the early stages of the plants' life (seedling establishment and early growth) than competition. Specifically, we found strong negative intraspecific PSF for biomass production in the first year in both species. Although the effects of soil conditioning persisted in later stages of plant's life, competition and drought stress became more important. Surprisingly, models predicting species coexistence contrasted with the effects on individual life stages, showing that our model species benefit from their self-conditioned soil in the long run. CONCLUSIONS: We provide evidence that the effects of PSF vary through plants' life stages. Our study suggests that we cannot easily predict the effects of soil conditioning on long-term coexistence of species using data only on performance at a single time as commonly done in PSF studies. We also show the importance of using as realistic environmental conditions as possible (such as drought stress experienced in dry grasslands) to draw reasonable conclusions on species coexistence.
- Klíčová slova
- Bromus erectus, Inula salicina, Janzen–Connell hypothesis, Plant–soil (below-ground) interactions, coexistence, germination, moisture treatment, population dynamics, population growth rate, target–neighbour design,
- MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- rostliny * MeSH
- semenáček MeSH
- vývoj rostlin MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda * MeSH
BACKGROUND AND AIMS: The origin of different cytotypes by autopolyploidy may be an important mechanism in plant diversification. Although cryptic autopolyploids probably comprise the largest fraction of overlooked plant diversity, our knowledge of their origin and evolution is still rather limited. Here we study the presumed autopolyploid aggregate of Aster amellus, which encompasses diploid and hexaploid cytotypes. Although the cytotypes of A. amellus are not morphologically distinguishable, previous studies showed spatial segregation and limited gene flow between them, which could result in different evolutionary trajectories for each cytotype. METHODS: We combine macroevolutionary, microevolutionary and niche modelling tools to disentangle the origin and the demographic history of the cytotypes, using chloroplast and nuclear markers in a dense population sampling in central Europe. KEY RESULTS: Our results revealed a segregation between diploid and hexaploid cytotypes in the nuclear genome, where each cytotype represents a monophyletic lineage probably homogenized by concerted evolution. In contrast, the chloroplast genome showed intermixed connections between the cytotypes, which may correspond to shared ancestral relationships. Phylogeny, demographic analyses and ecological niche modelling supported an ongoing differentiation of the cytotypes, where the hexaploid cytotype is experiencing a demographic expansion and niche differentiation with respect to its diploid relative. CONCLUSIONS: The two cytotypes may be considered as two different lineages at the onset of their evolutionary diversification. Polyploidization led to the occurrence of hexaploids, which expanded and changed their ecological niche.
- MeSH
- Aster genetika MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- DNA chloroplastová analýza MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA analýza MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- DNA chloroplastová MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA MeSH
Previous studies demonstrated the effects of polyploidy on various aspects of plant life. It is, however, difficult to determine which plant characteristics are responsible for fitness differences between cytotypes. We assessed the relationship between polyploidy and seed production. To separate the effects of flowering phenology, flower head size and herbivores from other possible causes, we collected data on these characteristics in single flower heads of diploid and tetraploid Centaurea phrygia in an experimental garden. We used structural equation modelling to identify the main pathways determining seed production. The results showed that the relationship between polyploidy and seed production is mediated by most of the studied factors. The different factors acted in opposing directions. Wider flower heads displayed higher above the ground suggested higher seed production in diploids. In contrast, earlier flowering and a lower abundance of herbivores suggested higher seed production in tetraploids. However, because phenology was the strongest driver of seed production in this system, the sum of all the pathways suggested greater seed production in tetraploids than in diploids. The pathway linking ploidy level directly to seed production, representing unstudied factors, was not significant. This suggests that the factors studied likely are drivers of the between-cytotype differences. Overall, this study demonstrated that tetraploids possess overall higher fitness estimated as seed production. Regardless of the patterns observed here, strong between year fluctuations in the composition and diversity of insect communities have been observed. The direction of the selection may thus vary between years. Consequently, understanding the structure of the interactions is more important for understanding the system than the overall effects of cytotype on a fitness trait in a specific year. Such knowledge can be used to model the evolution of species traits and plant-herbivore and plant-pollinator interactions in diploid-polyploid systems.
- Klíčová slova
- AMOS, Asteraceae, Carduoideae, pollinators, polyploid, pre-dispersal seed predation, seed set, structural equation modelling,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. AIMS AND METHODS: In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. KEY RESULTS: In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. CONCLUSIONS: All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.
- MeSH
- ekosystém * MeSH
- pastviny MeSH
- půda * chemie MeSH
- rostliny * MeSH
- semenáček MeSH
- zahrady MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- půda * MeSH
Due to increased levels of heterozygosity, polyploids are expected to have a greater ability to adapt to different environments than their diploid ancestors. While this theoretical pattern has been suggested repeatedly, studies comparing adaptability to changing conditions in diploids and polyploids are rare. The aim of the study was to determine the importance of environmental conditions of origin as well as target conditions on performance of two Anthericum species, allotetraploid A. liliago and diploid A. ramosum and to explore whether the two species differ in the ability to adapt to these environmental conditions. Specifically, we performed a common garden experiment using soil from 6 localities within the species' natural range, and we simulated the forest and open environments in which they might occur. We compared the performance of diploid A. ramosum and allotetraploid A. liliago originating from different locations in the different soils. The performance of the two species was not affected by simulated shading but differed strongly between the different target soils. Growth of the tetraploids was not affected by the origin of the plants. In contrast, diploids from the most nutrient poor soil performed best in the richest soil, indicating that diploids from deprived environments have an increased ability to acquire nutrients when available. They are thus able to profit from transfer to novel nutrient rich environments. Therefore, the results of the study did not support the general expectation that the polyploids should have a greater ability than the diploids to adapt to a wide range of conditions. In contrast, the results are in line with the observation that diploids occupy a wider range of environments than the allotetraploids in our system.
- MeSH
- diploidie MeSH
- ekosystém MeSH
- fyziologická adaptace * MeSH
- liliovité klasifikace genetika fyziologie MeSH
- polyploidie MeSH
- půda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
BACKGROUND: Many studies compare the population dynamics of single species within multiple habitat types, while much less is known about the differences in population dynamics in closely related species in the same habitat. Additionally, comparisons of the effect of habitat types and species are largely missing. METHODOLOGY AND PRINCIPAL FINDINGS: We estimated the importance of the habitat type and species for population dynamics of plants. Specifically, we compared the dynamics of two closely related species, the allotetraploid species Anthericum liliago and the diploid species Anthericum ramosum, occurring in the same habitat type. We also compared the dynamics of A. ramosum in two contrasting habitats. We examined three populations per species and habitat type. The results showed that single life history traits as well as the mean population dynamics of A. liliago and A. ramosum from the same habitat type were more similar than the population dynamics of A. ramosum from the two contrasting habitats. CONCLUSIONS: Our findings suggest that when transferring knowledge regarding population dynamics between populations, we need to take habitat conditions into account, as these conditions appear to be more important than the species involved (ploidy level). However, the two species differ significantly in their overall population growth rates, indicating that the ploidy level has an effect on species performance. In contrast to what has been suggested by previous studies, we observed a higher population growth rate in the diploid species. This is in agreement with the wider range of habitats occupied by the diploid species.
BACKGROUND: Despite the increasing number of studies attempting to model population growth in various organisms, we still know relatively little about the population dynamics of long-lived species that reproduce only in the later stages of their life cycle, such as trees. Predictions of the dynamics of these species are, however, urgently needed for planning management actions when species are either endangered or invasive. In long-lived species, a single management intervention may have consequences for several decades, and detailed knowledge of long-term performance can therefore elucidate possible outcomes during the management planning phase. METHODOLOGY AND PRINCIPAL FINDINGS: We studied the population dynamics of an invasive tree species, Pinus strobus, in three habitat types represented by their position along the elevation gradient occupied by the species. In agreement with previous studies on the population dynamics of long-lived perennials, our results show that the survival of the largest trees exhibits the highest elasticity in all of the studied habitats. In contrast, life table response experiments (LTRE) analysis showed that different stages contribute the most to population growth rates in different habitats, with generative reproduction being more important in lower slopes and valley bottoms and survival being more important on rock tops and upper slopes. CONCLUSIONS: The results indicate that P. strobus exhibits different growth strategies in different habitats that result in similar population growth rates. We propose that this plasticity in growth strategies is a key factor in the invasion success of the white pine. In all of the investigated habitats, the population growth rates are above 1, indicating that the population of the species is still increasing and has the ability to spread and occupy a wide range of habitats.
- MeSH
- borovice růst a vývoj MeSH
- ekosystém * MeSH
- populační dynamika MeSH
- populační růst * MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Švýcarsko MeSH
The maintenance of separated diploid and polyploid populations within a contact zone is possible due to both prezygotic and postzygotic isolation mechanisms. Niche differentiation between two cytotypes may be an important prezygotic isolating mechanism and can be studied using reciprocal transplant experiments. We investigated niche differentiation between diploid and hexaploid Aster amellus in their contact zone in the Czech Republic. Diploid populations are confined to habitats with low productivity, whereas hexaploid populations occur in habitats with both low and high productivity. Thus, we chose three diploid populations and six hexaploid populations, three in each of the two different habitat types. We analyzed habitat characteristics and carried out reciprocal transplant experiments in the field using both seeds and adult plants. Sites of diploid and hexaploid populations differed significantly in vegetation and soil properties. The mean number of juveniles was higher at sites of home ploidy level than at sites of foreign ploidy level, suggesting niche differentiation between the two cytotypes. On the other hand, transplanted adult plants survived at all sites and juvenile plants were able to establish at some sites of the foreign cytotype. Furthermore, the mean number of juveniles, survival, and flowering percentages were higher at home sites than at foreign sites, indicating local adaptation. We conclude that niche differentiation between the two cytotypes and local adaptation within each cytotype may contribute to the maintenance of diploid and hexaploid populations of A. amellus in their contact zone. Moreover, further factors, such as differences in flowering phenology and exclusion of minority cytotypes, should also be considered.
- MeSH
- Aster genetika růst a vývoj MeSH
- diploidie * MeSH
- ekosystém * MeSH
- polyploidie * MeSH
- půda MeSH
- semena rostlinná růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- půda MeSH