Nejvíce citovaný článek - PubMed ID 17911602
Regulation of Ca2+ signaling in mast cells by tyrosine-phosphorylated and unphosphorylated non-T cell activation linker
Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of activation, they release various preformed biologically active products and initiate the process of de novo synthesis of cytokines, chemokines, and other inflammatory mediators. This process is regulated at multiple levels. Besides the extensively studied IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling pathways, there is a critical activation pathway based on cholesterol-dependent, pore-forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic concentrations, the exotoxins induce mast cell activation, including degranulation, intracellular calcium concentration changes, and transcriptional activation, resulting in production of cytokines and other inflammatory mediators. Higher toxin concentrations lead to cell death. Similar activation events are observed when mast cells are exposed to sublytic concentrations of saponins or some other compounds interfering with the membrane integrity. We review the molecular mechanisms of mast cell activation by pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent plasma membrane perturbations. We discuss the importance of these signaling pathways in innate and acquired immunity.
- Klíčová slova
- Ca2+ signaling, cholesterol-dependent cytolysins, cytokine production, listeriolysin O, mast cell, pneumolysin, pore-forming toxins, streptolysin O,
- MeSH
- buněčná membrána imunologie metabolismus mikrobiologie patologie MeSH
- buněčná smrt MeSH
- buněčné mikroprostředí MeSH
- cholesterol metabolismus MeSH
- cytokiny metabolismus MeSH
- cytotoxiny metabolismus MeSH
- degranulace buněk MeSH
- grampozitivní bakteriální infekce imunologie metabolismus mikrobiologie patologie MeSH
- grampozitivní bakterie imunologie metabolismus MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- mastocyty imunologie metabolismus mikrobiologie patologie MeSH
- mediátory zánětu metabolismus MeSH
- vápníková signalizace MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cholesterol MeSH
- cytokiny MeSH
- cytotoxiny MeSH
- mediátory zánětu MeSH
Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI β and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.
- Klíčová slova
- 4.1R protein, chemotaxis, degranulation, mast cell, passive cutaneous anaphylaxis,
- MeSH
- chemotaxe imunologie MeSH
- degranulace buněk imunologie MeSH
- mastocyty imunologie metabolismus MeSH
- mikrofilamentové proteiny imunologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- pasivní kožní anafylaxe imunologie MeSH
- receptory IgE imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Epb41 protein, mouse MeSH Prohlížeč
- mikrofilamentové proteiny MeSH
- receptory IgE MeSH
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
- Klíčová slova
- Chemotaxis, IgE receptor, KIT receptor, Mast cell, Plasma membrane, Signal transduction,
- MeSH
- chemotaxe * účinky léků MeSH
- lidé MeSH
- mastocyty cytologie účinky léků MeSH
- signální transdukce * účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Non-T cell activation linker (NTAL; also called LAB or LAT2) is a transmembrane adaptor protein that is expressed in a subset of hematopoietic cells, including mast cells. There are conflicting reports on the role of NTAL in the high affinity immunoglobulin E receptor (FcεRI) signaling. Studies carried out on mast cells derived from mice with NTAL knock out (KO) and wild type mice suggested that NTAL is a negative regulator of FcεRI signaling, while experiments with RNAi-mediated NTAL knockdown (KD) in human mast cells and rat basophilic leukemia cells suggested its positive regulatory role. To determine whether different methodologies of NTAL ablation (KO vs KD) have different physiological consequences, we compared under well defined conditions FcεRI-mediated signaling events in mouse bone marrow-derived mast cells (BMMCs) with NTAL KO or KD. BMMCs with both NTAL KO and KD exhibited enhanced degranulation, calcium mobilization, chemotaxis, tyrosine phosphorylation of LAT and ERK, and depolymerization of filamentous actin. These data provide clear evidence that NTAL is a negative regulator of FcεRI activation events in murine BMMCs, independently of possible compensatory developmental alterations. To gain further insight into the role of NTAL in mast cells, we examined the transcriptome profiles of resting and antigen-activated NTAL KO, NTAL KD, and corresponding control BMMCs. Through this analysis we identified several genes that were differentially regulated in nonactivated and antigen-activated NTAL-deficient cells, when compared to the corresponding control cells. Some of the genes seem to be involved in regulation of cholesterol-dependent events in antigen-mediated chemotaxis. The combined data indicate multiple regulatory roles of NTAL in gene expression and mast cell physiology.
- MeSH
- adaptorové proteiny vezikulární transportní genetika metabolismus MeSH
- genetická transkripce fyziologie MeSH
- mastocyty metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- receptory IgE metabolismus MeSH
- signální transdukce imunologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny vezikulární transportní MeSH
- LAB protein, mouse MeSH Prohlížeč
- receptory IgE MeSH
- vápník MeSH
Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca(2+) response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)(2) or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcεRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)(2) fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcεRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- antigeny CD9 fyziologie MeSH
- antigeny CD98 - lehké řetězce metabolismus MeSH
- antigeny metabolismus MeSH
- biologické modely MeSH
- buněčná membrána metabolismus MeSH
- chemotaxe MeSH
- cytoskelet metabolismus MeSH
- fosfoproteiny metabolismus MeSH
- fosforylace MeSH
- glukuronidasa metabolismus MeSH
- imunoglobuliny - Fab fragmenty chemie MeSH
- krysa rodu Rattus MeSH
- mastocyty cytologie MeSH
- membránové proteiny metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- potkani Wistar MeSH
- receptory IgE metabolismus MeSH
- transportní systém aminokyselin y+ metabolismus MeSH
- tyrosin chemie MeSH
- vápník metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- antigeny CD9 MeSH
- antigeny CD98 - lehké řetězce MeSH
- antigeny MeSH
- fosfoproteiny MeSH
- glukuronidasa MeSH
- imunoglobuliny - Fab fragmenty MeSH
- Lat protein, mouse MeSH Prohlížeč
- Lat protein, rat MeSH Prohlížeč
- membránové proteiny MeSH
- receptory IgE MeSH
- SLC7A8 protein, mouse MeSH Prohlížeč
- Slc7a8 protein, rat MeSH Prohlížeč
- transportní systém aminokyselin y+ MeSH
- tyrosin MeSH
- vápník MeSH
Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis.
- Klíčová slova
- IgE receptor, LAT/LAT1, LAX, NTAL/Lab/LAT2, PAG/Cbp, mast cells, plasma membrane, transmembrane adaptor proteins,
- Publikační typ
- časopisecké články MeSH