Nejvíce citovaný článek - PubMed ID 18038420
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
- Klíčová slova
- COVID-19, SARS-CoV-2, Wharton’s jelly, cell-based therapy, cell-free therapy, clinical trials, cytokine storm, extracellular vesicles, inflammatory diseases, mesenchymal stromal cells, umbilical-cord-derived mesenchymal stromal cells,
- MeSH
- COVID-19 * metabolismus MeSH
- cytokiny metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- pandemie MeSH
- placenta metabolismus MeSH
- pupečník MeSH
- SARS-CoV-2 metabolismus MeSH
- těhotenství MeSH
- vakcíny proti COVID-19 MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
- vakcíny proti COVID-19 MeSH
Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of immune-related molecules, such as HLAs, IDO, CD276/B7-H3, and others, both in situ (HUC) and in in vitro-cultured WJ-MSCs. Morphological and biochemical techniques were used to define the expression of such molecules. In addition, we focused on the possible role of CD276/B7-H3 on T cells proliferation inhibition. We assessed CD276/B7-H3 expression by WJ-MSCs both in situ and alongside cell culture. WJ-MSCs were able to suppress T cell proliferation in mixed lymphocyte reaction (MLR). Moreover, we describe for the first time a specific role for CD276/B7-H3, since the immunomodulatory ability of WJ-MSCs was abolished upon anti-CD276/B7-H3 antibody addition to the MLR. These results further detail the immune regulation properties and tolerance induction exerted by human WJ-MSCs, in particular pointing to CD276/B7-H3 as one of the main involved factors. These data further suggest WJ-MSCs as potent tools to modulate local immune response in "support-type" regenerative medicine approaches.
- Klíčová slova
- B7-H3, CD276, Cell therapy, Human umbilical cord, Immunomodulation, Lymphocyte inhibition, Regenerative medicine, Stem cells, Wharton’s jelly mesenchymal stromal cells,
- MeSH
- aktivace lymfocytů imunologie MeSH
- antigeny B7 antagonisté a inhibitory imunologie MeSH
- buněčná diferenciace * MeSH
- cytokiny imunologie metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie imunologie MeSH
- proliferace buněk MeSH
- pupečník cytologie imunologie MeSH
- techniky in vitro MeSH
- Whartonův rosol cytologie imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny B7 MeSH
- CD276 protein, human MeSH Prohlížeč
- cytokiny MeSH